Files
clang-p2996/llvm/lib/Transforms/Instrumentation/SanitizerBinaryMetadata.cpp
Nikita Popov 979c275097 [IR] Store Triple in Module (NFC) (#129868)
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.

For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.

The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
2025-03-06 10:27:47 +01:00

503 lines
18 KiB
C++

//===- SanitizerBinaryMetadata.cpp - binary analysis sanitizers metadata --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of SanitizerBinaryMetadata.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <array>
#include <cstdint>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "sanmd"
namespace {
//===--- Constants --------------------------------------------------------===//
constexpr uint32_t kVersionBase = 2; // occupies lower 16 bits
constexpr uint32_t kVersionPtrSizeRel = (1u << 16); // offsets are pointer-sized
constexpr int kCtorDtorPriority = 2;
// Pairs of names of initialization callback functions and which section
// contains the relevant metadata.
class MetadataInfo {
public:
const StringRef FunctionPrefix;
const StringRef SectionSuffix;
static const MetadataInfo Covered;
static const MetadataInfo Atomics;
private:
// Forbid construction elsewhere.
explicit constexpr MetadataInfo(StringRef FunctionPrefix,
StringRef SectionSuffix)
: FunctionPrefix(FunctionPrefix), SectionSuffix(SectionSuffix) {}
};
const MetadataInfo MetadataInfo::Covered{
"__sanitizer_metadata_covered", kSanitizerBinaryMetadataCoveredSection};
const MetadataInfo MetadataInfo::Atomics{
"__sanitizer_metadata_atomics", kSanitizerBinaryMetadataAtomicsSection};
// The only instances of MetadataInfo are the constants above, so a set of
// them may simply store pointers to them. To deterministically generate code,
// we need to use a set with stable iteration order, such as SetVector.
using MetadataInfoSet = SetVector<const MetadataInfo *>;
//===--- Command-line options ---------------------------------------------===//
cl::opt<bool> ClWeakCallbacks(
"sanitizer-metadata-weak-callbacks",
cl::desc("Declare callbacks extern weak, and only call if non-null."),
cl::Hidden, cl::init(true));
cl::opt<bool>
ClNoSanitize("sanitizer-metadata-nosanitize-attr",
cl::desc("Mark some metadata features uncovered in functions "
"with associated no_sanitize attributes."),
cl::Hidden, cl::init(true));
cl::opt<bool> ClEmitCovered("sanitizer-metadata-covered",
cl::desc("Emit PCs for covered functions."),
cl::Hidden, cl::init(false));
cl::opt<bool> ClEmitAtomics("sanitizer-metadata-atomics",
cl::desc("Emit PCs for atomic operations."),
cl::Hidden, cl::init(false));
cl::opt<bool> ClEmitUAR("sanitizer-metadata-uar",
cl::desc("Emit PCs for start of functions that are "
"subject for use-after-return checking"),
cl::Hidden, cl::init(false));
//===--- Statistics -------------------------------------------------------===//
STATISTIC(NumMetadataCovered, "Metadata attached to covered functions");
STATISTIC(NumMetadataAtomics, "Metadata attached to atomics");
STATISTIC(NumMetadataUAR, "Metadata attached to UAR functions");
//===----------------------------------------------------------------------===//
// Apply opt overrides.
SanitizerBinaryMetadataOptions &&
transformOptionsFromCl(SanitizerBinaryMetadataOptions &&Opts) {
Opts.Covered |= ClEmitCovered;
Opts.Atomics |= ClEmitAtomics;
Opts.UAR |= ClEmitUAR;
return std::move(Opts);
}
class SanitizerBinaryMetadata {
public:
SanitizerBinaryMetadata(Module &M, SanitizerBinaryMetadataOptions Opts,
std::unique_ptr<SpecialCaseList> Ignorelist)
: Mod(M), Options(transformOptionsFromCl(std::move(Opts))),
Ignorelist(std::move(Ignorelist)), TargetTriple(M.getTargetTriple()),
VersionStr(utostr(getVersion())), IRB(M.getContext()) {
// FIXME: Make it work with other formats.
assert(TargetTriple.isOSBinFormatELF() && "ELF only");
assert(!(TargetTriple.isNVPTX() || TargetTriple.isAMDGPU()) &&
"Device targets are not supported");
}
bool run();
private:
uint32_t getVersion() const {
uint32_t Version = kVersionBase;
const auto CM = Mod.getCodeModel();
if (CM.has_value() && (*CM == CodeModel::Medium || *CM == CodeModel::Large))
Version |= kVersionPtrSizeRel;
return Version;
}
void runOn(Function &F, MetadataInfoSet &MIS);
// Determines which set of metadata to collect for this instruction.
//
// Returns true if covered metadata is required to unambiguously interpret
// other metadata. For example, if we are interested in atomics metadata, any
// function with memory operations (atomic or not) requires covered metadata
// to determine if a memory operation is atomic or not in modules compiled
// with SanitizerBinaryMetadata.
bool runOn(Instruction &I, MetadataInfoSet &MIS, MDBuilder &MDB,
uint64_t &FeatureMask);
// Get start/end section marker pointer.
GlobalVariable *getSectionMarker(const Twine &MarkerName, Type *Ty);
// Returns the target-dependent section name.
StringRef getSectionName(StringRef SectionSuffix);
// Returns the section start marker name.
StringRef getSectionStart(StringRef SectionSuffix);
// Returns the section end marker name.
StringRef getSectionEnd(StringRef SectionSuffix);
// Returns true if the access to the address should be considered "atomic".
bool pretendAtomicAccess(const Value *Addr);
Module &Mod;
const SanitizerBinaryMetadataOptions Options;
std::unique_ptr<SpecialCaseList> Ignorelist;
const Triple TargetTriple;
const std::string VersionStr;
IRBuilder<> IRB;
BumpPtrAllocator Alloc;
UniqueStringSaver StringPool{Alloc};
};
bool SanitizerBinaryMetadata::run() {
MetadataInfoSet MIS;
for (Function &F : Mod)
runOn(F, MIS);
if (MIS.empty())
return false;
//
// Setup constructors and call all initialization functions for requested
// metadata features.
//
auto *PtrTy = IRB.getPtrTy();
auto *Int32Ty = IRB.getInt32Ty();
const std::array<Type *, 3> InitTypes = {Int32Ty, PtrTy, PtrTy};
auto *Version = ConstantInt::get(Int32Ty, getVersion());
for (const MetadataInfo *MI : MIS) {
const std::array<Value *, InitTypes.size()> InitArgs = {
Version,
getSectionMarker(getSectionStart(MI->SectionSuffix), PtrTy),
getSectionMarker(getSectionEnd(MI->SectionSuffix), PtrTy),
};
// Calls to the initialization functions with different versions cannot be
// merged. Give the structors unique names based on the version, which will
// also be used as the COMDAT key.
const std::string StructorPrefix = (MI->FunctionPrefix + VersionStr).str();
// We declare the _add and _del functions as weak, and only call them if
// there is a valid symbol linked. This allows building binaries with
// semantic metadata, but without having callbacks. When a tool that wants
// the metadata is linked which provides the callbacks, they will be called.
Function *Ctor =
createSanitizerCtorAndInitFunctions(
Mod, StructorPrefix + ".module_ctor",
(MI->FunctionPrefix + "_add").str(), InitTypes, InitArgs,
/*VersionCheckName=*/StringRef(), /*Weak=*/ClWeakCallbacks)
.first;
Function *Dtor =
createSanitizerCtorAndInitFunctions(
Mod, StructorPrefix + ".module_dtor",
(MI->FunctionPrefix + "_del").str(), InitTypes, InitArgs,
/*VersionCheckName=*/StringRef(), /*Weak=*/ClWeakCallbacks)
.first;
Constant *CtorComdatKey = nullptr;
Constant *DtorComdatKey = nullptr;
if (TargetTriple.supportsCOMDAT()) {
// Use COMDAT to deduplicate constructor/destructor function. The COMDAT
// key needs to be a non-local linkage.
Ctor->setComdat(Mod.getOrInsertComdat(Ctor->getName()));
Dtor->setComdat(Mod.getOrInsertComdat(Dtor->getName()));
Ctor->setLinkage(GlobalValue::ExternalLinkage);
Dtor->setLinkage(GlobalValue::ExternalLinkage);
// DSOs should _not_ call another constructor/destructor!
Ctor->setVisibility(GlobalValue::HiddenVisibility);
Dtor->setVisibility(GlobalValue::HiddenVisibility);
CtorComdatKey = Ctor;
DtorComdatKey = Dtor;
}
appendToGlobalCtors(Mod, Ctor, kCtorDtorPriority, CtorComdatKey);
appendToGlobalDtors(Mod, Dtor, kCtorDtorPriority, DtorComdatKey);
}
return true;
}
void SanitizerBinaryMetadata::runOn(Function &F, MetadataInfoSet &MIS) {
if (F.empty())
return;
// Do not apply any instrumentation for naked functions.
if (F.hasFnAttribute(Attribute::Naked))
return;
if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
return;
if (Ignorelist && Ignorelist->inSection("metadata", "fun", F.getName()))
return;
// Don't touch available_externally functions, their actual body is elsewhere.
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
return;
MDBuilder MDB(F.getContext());
// The metadata features enabled for this function, stored along covered
// metadata (if enabled).
uint64_t FeatureMask = 0;
// Don't emit unnecessary covered metadata for all functions to save space.
bool RequiresCovered = false;
if (Options.Atomics || Options.UAR) {
for (BasicBlock &BB : F)
for (Instruction &I : BB)
RequiresCovered |= runOn(I, MIS, MDB, FeatureMask);
}
if (ClNoSanitize && F.hasFnAttribute("no_sanitize_thread"))
FeatureMask &= ~kSanitizerBinaryMetadataAtomics;
if (F.isVarArg())
FeatureMask &= ~kSanitizerBinaryMetadataUAR;
if (FeatureMask & kSanitizerBinaryMetadataUAR) {
RequiresCovered = true;
NumMetadataUAR++;
}
// Covered metadata is always emitted if explicitly requested, otherwise only
// if some other metadata requires it to unambiguously interpret it for
// modules compiled with SanitizerBinaryMetadata.
if (Options.Covered || (FeatureMask && RequiresCovered)) {
NumMetadataCovered++;
const auto *MI = &MetadataInfo::Covered;
MIS.insert(MI);
const StringRef Section = getSectionName(MI->SectionSuffix);
// The feature mask will be placed after the function size.
Constant *CFM = IRB.getInt64(FeatureMask);
F.setMetadata(LLVMContext::MD_pcsections,
MDB.createPCSections({{Section, {CFM}}}));
}
}
bool isUARSafeCall(CallInst *CI) {
auto *F = CI->getCalledFunction();
// There are no intrinsic functions that leak arguments.
// If the called function does not return, the current function
// does not return as well, so no possibility of use-after-return.
// Sanitizer function also don't leak or don't return.
// It's safe to both pass pointers to local variables to them
// and to tail-call them.
return F && (F->isIntrinsic() || F->doesNotReturn() ||
F->getName().starts_with("__asan_") ||
F->getName().starts_with("__hwsan_") ||
F->getName().starts_with("__ubsan_") ||
F->getName().starts_with("__msan_") ||
F->getName().starts_with("__tsan_"));
}
bool hasUseAfterReturnUnsafeUses(Value &V) {
for (User *U : V.users()) {
if (auto *I = dyn_cast<Instruction>(U)) {
if (I->isLifetimeStartOrEnd() || I->isDroppable())
continue;
if (auto *CI = dyn_cast<CallInst>(U)) {
if (isUARSafeCall(CI))
continue;
}
if (isa<LoadInst>(U))
continue;
if (auto *SI = dyn_cast<StoreInst>(U)) {
// If storing TO the alloca, then the address isn't taken.
if (SI->getOperand(1) == &V)
continue;
}
if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
if (!hasUseAfterReturnUnsafeUses(*GEPI))
continue;
} else if (auto *BCI = dyn_cast<BitCastInst>(U)) {
if (!hasUseAfterReturnUnsafeUses(*BCI))
continue;
}
}
return true;
}
return false;
}
bool useAfterReturnUnsafe(Instruction &I) {
if (isa<AllocaInst>(I))
return hasUseAfterReturnUnsafeUses(I);
// Tail-called functions are not necessary intercepted
// at runtime because there is no call instruction.
// So conservatively mark the caller as requiring checking.
else if (auto *CI = dyn_cast<CallInst>(&I))
return CI->isTailCall() && !isUARSafeCall(CI);
return false;
}
bool SanitizerBinaryMetadata::pretendAtomicAccess(const Value *Addr) {
if (!Addr)
return false;
Addr = Addr->stripInBoundsOffsets();
auto *GV = dyn_cast<GlobalVariable>(Addr);
if (!GV)
return false;
// Some compiler-generated accesses are known racy, to avoid false positives
// in data-race analysis pretend they're atomic.
if (GV->hasSection()) {
const auto OF = Mod.getTargetTriple().getObjectFormat();
const auto ProfSec =
getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false);
if (GV->getSection().ends_with(ProfSec))
return true;
}
if (GV->getName().starts_with("__llvm_gcov") ||
GV->getName().starts_with("__llvm_gcda"))
return true;
return false;
}
// Returns true if the memory at `Addr` may be shared with other threads.
bool maybeSharedMutable(const Value *Addr) {
// By default assume memory may be shared.
if (!Addr)
return true;
if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
!PointerMayBeCaptured(Addr, /*ReturnCaptures=*/true))
return false; // Object is on stack but does not escape.
Addr = Addr->stripInBoundsOffsets();
if (auto *GV = dyn_cast<GlobalVariable>(Addr)) {
if (GV->isConstant())
return false; // Shared, but not mutable.
}
return true;
}
bool SanitizerBinaryMetadata::runOn(Instruction &I, MetadataInfoSet &MIS,
MDBuilder &MDB, uint64_t &FeatureMask) {
SmallVector<const MetadataInfo *, 1> InstMetadata;
bool RequiresCovered = false;
// Only call if at least 1 type of metadata is requested.
assert(Options.UAR || Options.Atomics);
if (Options.UAR && !(FeatureMask & kSanitizerBinaryMetadataUAR)) {
if (useAfterReturnUnsafe(I))
FeatureMask |= kSanitizerBinaryMetadataUAR;
}
if (Options.Atomics) {
const Value *Addr = nullptr;
if (auto *SI = dyn_cast<StoreInst>(&I))
Addr = SI->getPointerOperand();
else if (auto *LI = dyn_cast<LoadInst>(&I))
Addr = LI->getPointerOperand();
if (I.mayReadOrWriteMemory() && maybeSharedMutable(Addr)) {
auto SSID = getAtomicSyncScopeID(&I);
if ((SSID.has_value() && *SSID != SyncScope::SingleThread) ||
pretendAtomicAccess(Addr)) {
NumMetadataAtomics++;
InstMetadata.push_back(&MetadataInfo::Atomics);
}
FeatureMask |= kSanitizerBinaryMetadataAtomics;
RequiresCovered = true;
}
}
// Attach MD_pcsections to instruction.
if (!InstMetadata.empty()) {
MIS.insert(InstMetadata.begin(), InstMetadata.end());
SmallVector<MDBuilder::PCSection, 1> Sections;
for (const auto &MI : InstMetadata)
Sections.push_back({getSectionName(MI->SectionSuffix), {}});
I.setMetadata(LLVMContext::MD_pcsections, MDB.createPCSections(Sections));
}
return RequiresCovered;
}
GlobalVariable *
SanitizerBinaryMetadata::getSectionMarker(const Twine &MarkerName, Type *Ty) {
// Use ExternalWeak so that if all sections are discarded due to section
// garbage collection, the linker will not report undefined symbol errors.
auto *Marker = new GlobalVariable(Mod, Ty, /*isConstant=*/false,
GlobalVariable::ExternalWeakLinkage,
/*Initializer=*/nullptr, MarkerName);
Marker->setVisibility(GlobalValue::HiddenVisibility);
return Marker;
}
StringRef SanitizerBinaryMetadata::getSectionName(StringRef SectionSuffix) {
// FIXME: Other TargetTriples.
// Request ULEB128 encoding for all integer constants.
return StringPool.save(SectionSuffix + VersionStr + "!C");
}
StringRef SanitizerBinaryMetadata::getSectionStart(StringRef SectionSuffix) {
// Twine only concatenates 2 strings; with >2 strings, concatenating them
// creates Twine temporaries, and returning the final Twine no longer works
// because we'd end up with a stack-use-after-return. So here we also use the
// StringPool to store the new string.
return StringPool.save("__start_" + SectionSuffix + VersionStr);
}
StringRef SanitizerBinaryMetadata::getSectionEnd(StringRef SectionSuffix) {
return StringPool.save("__stop_" + SectionSuffix + VersionStr);
}
} // namespace
SanitizerBinaryMetadataPass::SanitizerBinaryMetadataPass(
SanitizerBinaryMetadataOptions Opts, ArrayRef<std::string> IgnorelistFiles)
: Options(std::move(Opts)), IgnorelistFiles(std::move(IgnorelistFiles)) {}
PreservedAnalyses
SanitizerBinaryMetadataPass::run(Module &M, AnalysisManager<Module> &AM) {
std::unique_ptr<SpecialCaseList> Ignorelist;
if (!IgnorelistFiles.empty()) {
Ignorelist = SpecialCaseList::createOrDie(IgnorelistFiles,
*vfs::getRealFileSystem());
if (Ignorelist->inSection("metadata", "src", M.getSourceFileName()))
return PreservedAnalyses::all();
}
SanitizerBinaryMetadata Pass(M, Options, std::move(Ignorelist));
if (Pass.run())
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}