Use HCFGBuilder to build an initial VPlan 0, which wraps all input instructions in VPInstructions and update tryToBuildVPlanWithVPRecipes to replace the VPInstructions with widened recipes. At the moment, widened recipes are created based on the underlying instruction of the VPInstruction. Masks are also still created based on the input IR basic blocks and the loop CFG is flattened in the main loop processing the VPInstructions. This patch also incldues support for Switch instructions in HCFGBuilder using just a VPInstruction with Instruction::Switch opcode. There are multiple follow-ups planned: * Perform predication on the VPlan directly, * Unify code constructing VPlan 0 to be shared by both inner and outer loop code paths. * Construct VPlan 0 once, clone subsequent ones for VFs PR: https://github.com/llvm/llvm-project/pull/124432
514 lines
31 KiB
LLVM
514 lines
31 KiB
LLVM
; This is the loop in c++ being vectorize in this file with
|
|
;vector.reverse
|
|
; #pragma clang loop vectorize_width(4, scalable)
|
|
; for (int i = N-1; i >= 0; --i)
|
|
; a[i] = b[i] + 1.0;
|
|
|
|
; REQUIRES: asserts
|
|
; RUN: opt -passes=loop-vectorize,dce,instcombine -mtriple riscv64-linux-gnu \
|
|
; RUN: -mattr=+v -debug-only=loop-vectorize -scalable-vectorization=on \
|
|
; RUN: -riscv-v-vector-bits-min=128 -disable-output < %s 2>&1 | FileCheck %s
|
|
|
|
define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
|
|
; CHECK-LABEL: 'vector_reverse_i64'
|
|
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
|
|
; CHECK-NEXT: LV: Found a loop: for.body
|
|
; CHECK-NEXT: LV: Found an induction variable.
|
|
; CHECK-NEXT: LV: Found an induction variable.
|
|
; CHECK-NEXT: LV: Did not find one integer induction var.
|
|
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK-NEXT: LV: Found trip count: 0
|
|
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
|
|
; CHECK-NEXT: LV: Scalable vectorization is available
|
|
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
|
|
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
|
|
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
|
|
; CHECK-NEXT: LV: Using user VF vscale x 4.
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
|
|
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
|
|
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
|
|
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
|
|
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body.preheader>:
|
|
; CHECK-NEXT: IR %0 = zext i32 %n to i64
|
|
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
|
|
; CHECK-NEXT: Successor(s): vector.ph
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: vector.ph:
|
|
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + vp<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + vp<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: Successor(s): vector loop
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: <x1> vector loop: {
|
|
; CHECK-NEXT: vector.body:
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
|
|
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx>, vp<[[VF]]>
|
|
; CHECK-NEXT: WIDEN ir<%1> = load vp<[[VEC_PTR]]>
|
|
; CHECK-NEXT: WIDEN ir<%add9> = add ir<%1>, ir<1>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx3>, vp<[[VF]]>
|
|
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add9>
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
|
|
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: Successor(s): middle.block
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: middle.block:
|
|
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, vp<[[VEC_TC]]>
|
|
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, scalar.ph
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: scalar.ph:
|
|
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
|
|
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.body>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body>:
|
|
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from scalar.ph)
|
|
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from scalar.ph)
|
|
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
|
|
; CHECK-NEXT: LV(REG): Calculating max register usage:
|
|
; CHECK-NEXT: LV(REG): At #0 Interval # 0
|
|
; CHECK-NEXT: LV(REG): At #1 Interval # 1
|
|
; CHECK-NEXT: LV(REG): At #2 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #3 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #4 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #5 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #6 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #7 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #9 Interval # 1
|
|
; CHECK-NEXT: LV(REG): At #10 Interval # 2
|
|
; CHECK-NEXT: LV(REG): VF = vscale x 4
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
|
|
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
|
|
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK-NEXT: LV: Loop cost is 32
|
|
; CHECK-NEXT: LV: IC is 1
|
|
; CHECK-NEXT: LV: VF is vscale x 4
|
|
; CHECK-NEXT: LV: Not Interleaving.
|
|
; CHECK-NEXT: LV: Interleaving is not beneficial.
|
|
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
|
|
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
|
|
; CHECK: Executing best plan with VF=vscale x 4, UF=1
|
|
; CHECK-NEXT: VPlan 'Final VPlan for VF={vscale x 4},UF={1}' {
|
|
; CHECK-NEXT: Live-in ir<[[VF:%.+]]> = VF
|
|
; CHECK-NEXT: Live-in ir<[[VFxUF:%.+]]>.1 = VF * UF
|
|
; CHECK-NEXT: Live-in ir<[[VEC_TC:%.+]]> = vector-trip-count
|
|
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body.preheader>:
|
|
; CHECK-NEXT: IR %0 = zext i32 %n to i64
|
|
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.scevcheck>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.scevcheck>:
|
|
; CHECK-NEXT: IR %3 = add nsw i64 %0, -1
|
|
; CHECK-NEXT: IR %4 = add i32 %n, -1
|
|
; CHECK-NEXT: IR %5 = trunc i64 %3 to i32
|
|
; CHECK-NEXT: IR %mul = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 1, i32 %5)
|
|
; CHECK-NEXT: IR %mul.result = extractvalue { i32, i1 } %mul, 0
|
|
; CHECK-NEXT: IR %mul.overflow = extractvalue { i32, i1 } %mul, 1
|
|
; CHECK-NEXT: IR %6 = sub i32 %4, %mul.result
|
|
; CHECK-NEXT: IR %7 = icmp ugt i32 %6, %4
|
|
; CHECK-NEXT: IR %8 = or i1 %7, %mul.overflow
|
|
; CHECK-NEXT: IR %9 = icmp ugt i64 %3, 4294967295
|
|
; CHECK-NEXT: IR %10 = or i1 %8, %9
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.memcheck>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.memcheck>:
|
|
; CHECK-NEXT: IR %11 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %12 = mul i64 %11, 4
|
|
; CHECK-NEXT: IR %13 = mul i64 %12, 4
|
|
; CHECK-NEXT: IR %14 = sub i64 %B1, %A2
|
|
; CHECK-NEXT: IR %diff.check = icmp ult i64 %14, %13
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.ph>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.ph>:
|
|
; CHECK-NEXT: IR %15 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %16 = mul i64 %15, 4
|
|
; CHECK-NEXT: IR %n.mod.vf = urem i64 %0, %16
|
|
; CHECK-NEXT: IR %n.vec = sub i64 %0, %n.mod.vf
|
|
; CHECK-NEXT: IR %17 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %18 = mul i64 %17, 4
|
|
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + ir<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + ir<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: Successor(s): vector loop
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: <x1> vector loop: {
|
|
; CHECK-NEXT: vector.body:
|
|
; CHECK-NEXT: SCALAR-PHI vp<[[CAN_IV:%.+]]> = phi ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
|
|
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx>, ir<[[VF]]>
|
|
; CHECK-NEXT: WIDEN ir<[[L:%.+]]> = load vp<[[VEC_PTR]]>
|
|
; CHECK-NEXT: WIDEN ir<%add9> = add ir<[[L]]>, ir<1>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx3>, ir<[[VF]]>
|
|
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add9>
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, ir<[[VFxUF]]>.1
|
|
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, ir<[[VEC_TC]]>
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: Successor(s): middle.block
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: middle.block:
|
|
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, ir<[[VEC_TC]]>
|
|
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, ir-bb<scalar.ph>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<scalar.ph>:
|
|
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
|
|
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.body>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body>:
|
|
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %scalar.ph ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME_1]]> from ir-bb<scalar.ph>)
|
|
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %scalar.ph ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME_2]]>.1 from ir-bb<scalar.ph>)
|
|
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
;
|
|
entry:
|
|
%cmp7 = icmp sgt i32 %n, 0
|
|
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
%0 = zext i32 %n to i64
|
|
br label %for.body
|
|
|
|
for.cond.cleanup: ; preds = %for.body, %entry
|
|
ret void
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
%i.0 = add nsw i32 %i.0.in8, -1
|
|
%idxprom = zext i32 %i.0 to i64
|
|
%arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
|
|
%1 = load i32, ptr %arrayidx, align 4
|
|
%add9 = add i32 %1, 1
|
|
%arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
|
|
store i32 %add9, ptr %arrayidx3, align 4
|
|
%cmp = icmp ugt i64 %indvars.iv, 1
|
|
%indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
|
|
}
|
|
|
|
define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
|
|
; CHECK-LABEL: 'vector_reverse_f32'
|
|
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
|
|
; CHECK-NEXT: LV: Found a loop: for.body
|
|
; CHECK-NEXT: LV: Found an induction variable.
|
|
; CHECK-NEXT: LV: Found an induction variable.
|
|
; CHECK-NEXT: LV: Found FP op with unsafe algebra.
|
|
; CHECK-NEXT: LV: Did not find one integer induction var.
|
|
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK-NEXT: LV: Found trip count: 0
|
|
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
|
|
; CHECK-NEXT: LV: Scalable vectorization is available
|
|
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
|
|
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
|
|
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 4 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
|
|
; CHECK-NEXT: LV: Using user VF vscale x 4.
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
|
|
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
|
|
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
|
|
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
|
|
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body.preheader>:
|
|
; CHECK-NEXT: IR %0 = zext i32 %n to i64
|
|
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
|
|
; CHECK-NEXT: Successor(s): vector.ph
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: vector.ph:
|
|
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + vp<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + vp<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: Successor(s): vector loop
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: <x1> vector loop: {
|
|
; CHECK-NEXT: vector.body:
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
|
|
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx>, vp<[[VF]]>
|
|
; CHECK-NEXT: WIDEN ir<%1> = load vp<[[VEC_PTR]]>
|
|
; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<%1>, ir<1.000000e+00>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx3>, vp<[[VF]]>
|
|
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%conv1>
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
|
|
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: Successor(s): middle.block
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: middle.block:
|
|
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, vp<[[VEC_TC]]>
|
|
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, scalar.ph
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: scalar.ph:
|
|
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
|
|
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.body>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body>:
|
|
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from scalar.ph)
|
|
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from scalar.ph)
|
|
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 4 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
|
|
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
|
|
; CHECK-NEXT: LV(REG): Calculating max register usage:
|
|
; CHECK-NEXT: LV(REG): At #0 Interval # 0
|
|
; CHECK-NEXT: LV(REG): At #1 Interval # 1
|
|
; CHECK-NEXT: LV(REG): At #2 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #3 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #4 Interval # 2
|
|
; CHECK-NEXT: LV(REG): At #5 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #6 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #7 Interval # 3
|
|
; CHECK-NEXT: LV(REG): At #9 Interval # 1
|
|
; CHECK-NEXT: LV(REG): At #10 Interval # 2
|
|
; CHECK-NEXT: LV(REG): VF = vscale x 4
|
|
; CHECK-NEXT: LV(REG): Found max usage: 2 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
|
|
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
|
|
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
|
|
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
|
|
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
|
|
; CHECK-NEXT: LV: Loop does not require scalar epilogue
|
|
; CHECK-NEXT: LV: Loop cost is 34
|
|
; CHECK-NEXT: LV: IC is 1
|
|
; CHECK-NEXT: LV: VF is vscale x 4
|
|
; CHECK-NEXT: LV: Not Interleaving.
|
|
; CHECK-NEXT: LV: Interleaving is not beneficial.
|
|
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
|
|
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
|
|
; CHECK: Executing best plan with VF=vscale x 4, UF=1
|
|
; CHECK-NEXT: VPlan 'Final VPlan for VF={vscale x 4},UF={1}' {
|
|
; CHECK-NEXT: Live-in ir<[[VF:%.+]]> = VF
|
|
; CHECK-NEXT: Live-in ir<[[VFxUF:%.+]]>.1 = VF * UF
|
|
; CHECK-NEXT: Live-in ir<[[VEC_TC:%.+]]> = vector-trip-count
|
|
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body.preheader>:
|
|
; CHECK-NEXT: IR %0 = zext i32 %n to i64
|
|
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.scevcheck>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.scevcheck>:
|
|
; CHECK-NEXT: IR %3 = add nsw i64 %0, -1
|
|
; CHECK-NEXT: IR %4 = add i32 %n, -1
|
|
; CHECK-NEXT: IR %5 = trunc i64 %3 to i32
|
|
; CHECK-NEXT: IR %mul = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 1, i32 %5)
|
|
; CHECK-NEXT: IR %mul.result = extractvalue { i32, i1 } %mul, 0
|
|
; CHECK-NEXT: IR %mul.overflow = extractvalue { i32, i1 } %mul, 1
|
|
; CHECK-NEXT: IR %6 = sub i32 %4, %mul.result
|
|
; CHECK-NEXT: IR %7 = icmp ugt i32 %6, %4
|
|
; CHECK-NEXT: IR %8 = or i1 %7, %mul.overflow
|
|
; CHECK-NEXT: IR %9 = icmp ugt i64 %3, 4294967295
|
|
; CHECK-NEXT: IR %10 = or i1 %8, %9
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.memcheck>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.memcheck>:
|
|
; CHECK-NEXT: IR %11 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %12 = mul i64 %11, 4
|
|
; CHECK-NEXT: IR %13 = mul i64 %12, 4
|
|
; CHECK-NEXT: IR %14 = sub i64 %B1, %A2
|
|
; CHECK-NEXT: IR %diff.check = icmp ult i64 %14, %13
|
|
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.ph>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<vector.ph>:
|
|
; CHECK-NEXT: IR %15 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %16 = mul i64 %15, 4
|
|
; CHECK-NEXT: IR %n.mod.vf = urem i64 %0, %16
|
|
; CHECK-NEXT: IR %n.vec = sub i64 %0, %n.mod.vf
|
|
; CHECK-NEXT: IR %17 = call i64 @llvm.vscale.i64()
|
|
; CHECK-NEXT: IR %18 = mul i64 %17, 4
|
|
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + ir<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + ir<[[VEC_TC]]> * ir<-1>
|
|
; CHECK-NEXT: Successor(s): vector loop
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: <x1> vector loop: {
|
|
; CHECK-NEXT: vector.body:
|
|
; CHECK-NEXT: SCALAR-PHI vp<[[CAN_IV:%.+]]> = phi ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
|
|
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
|
|
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
|
|
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx>, ir<[[VF]]>
|
|
; CHECK-NEXT: WIDEN ir<[[L:%.+]]> = load vp<[[VEC_PTR]]>
|
|
; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<[[L]]>, ir<1.000000e+00>
|
|
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
|
|
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = reverse-vector-pointer inbounds ir<%arrayidx3>, ir<[[VF]]>
|
|
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%conv1>
|
|
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, ir<[[VFxUF]]>.1
|
|
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, ir<[[VEC_TC]]>
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
; CHECK-NEXT: Successor(s): middle.block
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: middle.block:
|
|
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, ir<[[VEC_TC]]>
|
|
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, ir-bb<scalar.ph>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<scalar.ph>:
|
|
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
|
|
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
|
|
; CHECK-NEXT: Successor(s): ir-bb<for.body>
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: ir-bb<for.body>:
|
|
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %scalar.ph ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from ir-bb<scalar.ph>)
|
|
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %scalar.ph ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from ir-bb<scalar.ph>)
|
|
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
; CHECK-NEXT: No successors
|
|
; CHECK-NEXT: }
|
|
;
|
|
entry:
|
|
%cmp7 = icmp sgt i32 %n, 0
|
|
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
|
|
|
|
for.body.preheader: ; preds = %entry
|
|
%0 = zext i32 %n to i64
|
|
br label %for.body
|
|
|
|
for.cond.cleanup: ; preds = %for.body, %entry
|
|
ret void
|
|
|
|
for.body: ; preds = %for.body.preheader, %for.body
|
|
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
|
|
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
|
|
%i.0 = add nsw i32 %i.0.in8, -1
|
|
%idxprom = zext i32 %i.0 to i64
|
|
%arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
|
|
%1 = load float, ptr %arrayidx, align 4
|
|
%conv1 = fadd float %1, 1.000000e+00
|
|
%arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
|
|
store float %conv1, ptr %arrayidx3, align 4
|
|
%cmp = icmp ugt i64 %indvars.iv, 1
|
|
%indvars.iv.next = add nsw i64 %indvars.iv, -1
|
|
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
|
|
}
|
|
|
|
!0 = distinct !{!0, !1, !2, !3, !4}
|
|
!1 = !{!"llvm.loop.mustprogress"}
|
|
!2 = !{!"llvm.loop.vectorize.width", i32 4}
|
|
!3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
|
|
!4 = !{!"llvm.loop.vectorize.enable", i1 true}
|