The layout postprocessing step was removed and is now part of the FuncOp bufferization. If the user specified a certain layout map for a tensor function arg, use that layout map directly when bufferizing the function signature. Previously, the bufferization used a generic layout map for every tensor function arg and then updated function signatures and CallOps in a separate step. Differential Revision: https://reviews.llvm.org/D122228
1038 lines
42 KiB
C++
1038 lines
42 KiB
C++
//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Module Bufferization is an extension of One-Shot Bufferize that
|
|
// bufferizes function boundaries. It provides `BufferizableOpInterface`
|
|
// implementations for FuncOp, CallOp and ReturnOp.
|
|
//
|
|
// Module Bufferization is run via `runModuleBufferize(ModuleOp, ...)`. This
|
|
// function analyzes the given module and determines the order of analysis and
|
|
// bufferization: Functions that are called are processed before their
|
|
// respective callers.
|
|
//
|
|
// After analyzing a FuncOp, additional information about its bbArgs is
|
|
// gathered through PostAnalysisStepFns and stored in `FuncAnalysisState`.
|
|
//
|
|
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
|
|
// for
|
|
// each tensor return value (if any).
|
|
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
|
|
// read/written.
|
|
//
|
|
// Only tensors that are equivalent to some FuncOp bbArg may be returned.
|
|
// Bufferization currently fails if other tensors (in particular tensors that
|
|
// bufferize out-of-place and result in a new buffer allocation) are returned.
|
|
// In the future, such allocations could be hoisted to the caller.
|
|
//
|
|
// Example: `foo` fails bufferization because %0 is not equivalent to any bbArg.
|
|
// ```
|
|
// func @foo() -> tensor<?xf32> {
|
|
// %0 = linalg.init_tensor [...] : tensor<?xf32>
|
|
// return %0 : tensor<?xf32>
|
|
// }
|
|
// ```
|
|
//
|
|
// Module Bufferization implements the following calling convention.
|
|
//
|
|
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
|
|
// be written to in-place.
|
|
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
|
|
// the CallOp must bufferize out-of-place.
|
|
//
|
|
// Example: The tensor.insert op bufferizes in-place because it is allowed to
|
|
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
|
|
// out-of-place because `%t0` is modified by the callee but read by the
|
|
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
|
|
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
|
|
// ```
|
|
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
|
|
// %f = ... : f32
|
|
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
|
|
// return %0 : tensor<?xf32>
|
|
// }
|
|
//
|
|
// func @caller() -> () {
|
|
// %t0 = ... : tensor<?xf32>
|
|
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
|
|
// %2 = tensor.extract %1[...] : tensor<?xf32>
|
|
// }
|
|
// ```
|
|
//
|
|
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
|
|
// analyze the function body. In such a case, the CallOp analysis conservatively
|
|
// assumes that each tensor OpOperand is both read and written.
|
|
//
|
|
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
|
|
// as "not reading" and/or "not writing".
|
|
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ModuleBufferization.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
using namespace mlir;
|
|
using namespace linalg;
|
|
using namespace tensor;
|
|
using namespace comprehensive_bufferize;
|
|
using namespace mlir::bufferization;
|
|
|
|
/// A mapping of FuncOps to their callers.
|
|
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
|
|
|
|
namespace {
|
|
/// The state of analysis of a FuncOp.
|
|
enum class FuncOpAnalysisState { NotAnalyzed, InProgress, Analyzed };
|
|
|
|
/// Extra analysis state that is required for bufferization of function
|
|
/// boundaries.
|
|
struct FuncAnalysisState : public DialectAnalysisState {
|
|
// Note: Function arguments and/or function return values may disappear during
|
|
// bufferization. Functions and their CallOps are analyzed and bufferized
|
|
// separately. To ensure that a CallOp analysis/bufferization can access an
|
|
// already bufferized function's analysis results, we store bbArg/return value
|
|
// indices instead of BlockArguments/OpOperand pointers.
|
|
|
|
/// A set of block argument indices.
|
|
using BbArgIndexSet = DenseSet<int64_t>;
|
|
|
|
/// A mapping of indices to indices.
|
|
using IndexMapping = DenseMap<int64_t, int64_t>;
|
|
|
|
/// A mapping of indices to a list of indices.
|
|
using IndexToIndexListMapping = DenseMap<int64_t, SmallVector<int64_t>>;
|
|
|
|
/// A mapping of ReturnOp OpOperand indices to equivalent FuncOp BBArg
|
|
/// indices.
|
|
DenseMap<func::FuncOp, IndexMapping> equivalentFuncArgs;
|
|
|
|
/// A mapping of ReturnOp OpOperand indices to aliasing FuncOp BBArg indices.
|
|
DenseMap<func::FuncOp, IndexToIndexListMapping> aliasingFuncArgs;
|
|
|
|
/// A mapping of FuncOp BBArg indices to aliasing ReturnOp OpOperand indices.
|
|
DenseMap<func::FuncOp, IndexToIndexListMapping> aliasingReturnVals;
|
|
|
|
/// A set of all read BlockArguments of FuncOps.
|
|
DenseMap<func::FuncOp, BbArgIndexSet> readBbArgs;
|
|
|
|
/// A set of all written-to BlockArguments of FuncOps.
|
|
DenseMap<func::FuncOp, BbArgIndexSet> writtenBbArgs;
|
|
|
|
/// Keep track of which FuncOps are fully analyzed or currently being
|
|
/// analyzed.
|
|
DenseMap<func::FuncOp, FuncOpAnalysisState> analyzedFuncOps;
|
|
|
|
/// This function is called right before analyzing the given FuncOp. It
|
|
/// initializes the data structures for the FuncOp in this state object.
|
|
void startFunctionAnalysis(func::FuncOp funcOp) {
|
|
analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
|
|
auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
|
|
auto createdAliasingOperands =
|
|
aliasingFuncArgs.try_emplace(funcOp, IndexToIndexListMapping());
|
|
auto createdAliasingResults =
|
|
aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
|
|
auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
|
auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
|
(void)createdEquiv;
|
|
(void)createdAliasingOperands;
|
|
(void)createdAliasingResults;
|
|
(void)createdRead;
|
|
(void)createdWritten;
|
|
#ifndef NDEBUG
|
|
assert(createdEquiv.second && "equivalence info exists already");
|
|
assert(createdAliasingOperands.second && "aliasing info exists already");
|
|
assert(createdAliasingResults.second && "aliasing info exists already");
|
|
assert(createdRead.second && "bbarg access info exists already");
|
|
assert(createdWritten.second && "bbarg access info exists already");
|
|
#endif // NDEBUG
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Get FuncAnalysisState.
|
|
static const FuncAnalysisState &
|
|
getFuncAnalysisState(const AnalysisState &state) {
|
|
Optional<const FuncAnalysisState *> maybeState =
|
|
state.getDialectState<FuncAnalysisState>(
|
|
func::FuncDialect::getDialectNamespace());
|
|
assert(maybeState.hasValue() && "FuncAnalysisState does not exist");
|
|
return **maybeState;
|
|
}
|
|
|
|
/// Get or create FuncAnalysisState.
|
|
static FuncAnalysisState &getFuncAnalysisState(AnalysisState &state) {
|
|
return state.getOrCreateDialectState<FuncAnalysisState>(
|
|
func::FuncDialect::getDialectNamespace());
|
|
}
|
|
|
|
/// Return the state (phase) of analysis of the FuncOp.
|
|
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
|
|
func::FuncOp funcOp) {
|
|
const FuncAnalysisState &moduleState = getFuncAnalysisState(state);
|
|
auto it = moduleState.analyzedFuncOps.find(funcOp);
|
|
if (it == moduleState.analyzedFuncOps.end())
|
|
return FuncOpAnalysisState::NotAnalyzed;
|
|
return it->second;
|
|
}
|
|
|
|
/// Return the unique ReturnOp that terminates `funcOp`.
|
|
/// Return nullptr if there is no such unique ReturnOp.
|
|
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
|
|
func::ReturnOp returnOp;
|
|
for (Block &b : funcOp.getBody()) {
|
|
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
|
|
if (returnOp)
|
|
return nullptr;
|
|
returnOp = candidateOp;
|
|
}
|
|
}
|
|
return returnOp;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Annotate IR with the results of the analysis. For testing purposes only.
|
|
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
|
|
BlockArgument bbArg) {
|
|
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
|
|
Operation *op = returnVal.getOwner();
|
|
|
|
SmallVector<int64_t> equivBbArgs;
|
|
if (op->hasAttr(kEquivalentArgsAttr)) {
|
|
auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
|
|
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
|
|
return a.cast<IntegerAttr>().getValue().getSExtValue();
|
|
}));
|
|
} else {
|
|
equivBbArgs.append(op->getNumOperands(), -1);
|
|
}
|
|
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
|
|
|
|
OpBuilder b(op->getContext());
|
|
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
|
|
}
|
|
|
|
/// Store function BlockArguments that are equivalent to/aliasing a returned
|
|
/// value in FuncAnalysisState.
|
|
static LogicalResult
|
|
aliasingFuncOpBBArgsAnalysis(Operation *op, AnalysisState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) {
|
|
FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
|
|
// Support only single return-terminated block in the function.
|
|
auto funcOp = cast<func::FuncOp>(op);
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
for (OpOperand &returnVal : returnOp->getOpOperands())
|
|
if (returnVal.get().getType().isa<RankedTensorType>())
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<RankedTensorType>()) {
|
|
int64_t returnIdx = returnVal.getOperandNumber();
|
|
int64_t bbArgIdx = bbArg.getArgNumber();
|
|
if (aliasInfo.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
|
|
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
|
|
if (state.getOptions().testAnalysisOnly)
|
|
annotateEquivalentReturnBbArg(returnVal, bbArg);
|
|
}
|
|
if (aliasInfo.areAliasingBufferizedValues(returnVal.get(), bbArg)) {
|
|
funcState.aliasingFuncArgs[funcOp][returnIdx].push_back(bbArgIdx);
|
|
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return true if the buffer of the given tensor value is written to. Must not
|
|
/// be called for values inside not yet analyzed functions. (Post-analysis
|
|
/// steps do not have to be run yet, i.e., "in progress" is also OK.)
|
|
static bool isValueWritten(Value value, const AnalysisState &state,
|
|
const BufferizationAliasInfo &aliasInfo) {
|
|
#ifndef NDEBUG
|
|
assert(value.getType().isa<TensorType>() && "expected TensorType");
|
|
func::FuncOp funcOp;
|
|
if (auto bbArg = value.dyn_cast<BlockArgument>()) {
|
|
Operation *owner = bbArg.getOwner()->getParentOp();
|
|
funcOp = isa<func::FuncOp>(owner) ? cast<func::FuncOp>(owner)
|
|
: owner->getParentOfType<func::FuncOp>();
|
|
} else {
|
|
funcOp = value.getDefiningOp()->getParentOfType<func::FuncOp>();
|
|
}
|
|
assert(getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::NotAnalyzed &&
|
|
"FuncOp must be fully analyzed or analysis in progress");
|
|
#endif // NDEBUG
|
|
|
|
bool isWritten = false;
|
|
aliasInfo.applyOnAliases(value, [&](Value val) {
|
|
for (OpOperand &use : val.getUses())
|
|
if (state.isInPlace(use) && state.bufferizesToMemoryWrite(use))
|
|
isWritten = true;
|
|
});
|
|
return isWritten;
|
|
}
|
|
|
|
static void annotateFuncArgAccess(func::FuncOp funcOp, BlockArgument bbArg,
|
|
bool isRead, bool isWritten) {
|
|
OpBuilder b(funcOp.getContext());
|
|
Attribute accessType;
|
|
if (isRead && isWritten) {
|
|
accessType = b.getStringAttr("read-write");
|
|
} else if (isRead) {
|
|
accessType = b.getStringAttr("read");
|
|
} else if (isWritten) {
|
|
accessType = b.getStringAttr("write");
|
|
} else {
|
|
accessType = b.getStringAttr("none");
|
|
}
|
|
funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
|
|
}
|
|
|
|
/// Determine which FuncOp bbArgs are read and which are written. If this
|
|
/// PostAnalysisStepFn is run on a function with unknown ops, it will
|
|
/// conservatively assume that such ops bufferize to a read + write.
|
|
static LogicalResult
|
|
funcOpBbArgReadWriteAnalysis(Operation *op, AnalysisState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) {
|
|
FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
auto funcOp = cast<func::FuncOp>(op);
|
|
|
|
// If the function has no body, conservatively assume that all args are
|
|
// read + written.
|
|
if (funcOp.getBody().empty()) {
|
|
for (BlockArgument bbArg : funcOp.getArguments()) {
|
|
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
|
|
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
for (BlockArgument bbArg : funcOp.getArguments()) {
|
|
if (!bbArg.getType().isa<TensorType>())
|
|
continue;
|
|
bool isRead = state.isValueRead(bbArg);
|
|
bool isWritten = isValueWritten(bbArg, state, aliasInfo);
|
|
if (state.getOptions().testAnalysisOnly)
|
|
annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
|
|
if (isRead)
|
|
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
|
|
if (isWritten)
|
|
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
/// Remove the attribute that triggers inplace bufferization on a func::FuncOp
|
|
/// argument `bbArg`.
|
|
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
|
|
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kBufferLayoutAttrName);
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName);
|
|
}
|
|
|
|
/// Return the func::FuncOp called by `callOp`.
|
|
static func::FuncOp getCalledFunction(CallOpInterface callOp) {
|
|
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
|
|
if (!sym)
|
|
return nullptr;
|
|
return dyn_cast_or_null<func::FuncOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
|
|
}
|
|
|
|
/// Return the index-th bufferized function argument type. This assumes that the
|
|
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
|
|
/// specified by the user. If no layout map is specified, a fully dynamic map is
|
|
/// used.
|
|
static BaseMemRefType
|
|
getBufferizedFunctionArgType(func::FuncOp funcOp, int64_t index,
|
|
const BufferizationOptions &options) {
|
|
auto tensorType =
|
|
funcOp.getFunctionType().getInput(index).dyn_cast<TensorType>();
|
|
assert(tensorType && "expected TensorType");
|
|
BaseMemRefType memrefType = getMemRefType(tensorType, options);
|
|
|
|
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
|
|
index, BufferizableOpInterface::kBufferLayoutAttrName);
|
|
if (!layoutAttr)
|
|
return memrefType;
|
|
|
|
auto rankedMemrefType = memrefType.dyn_cast<MemRefType>();
|
|
assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
|
|
return MemRefType::get(
|
|
rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
|
|
layoutAttr.getValue(), rankedMemrefType.getMemorySpaceAsInt());
|
|
}
|
|
|
|
/// Gather equivalence info of CallOps.
|
|
/// Note: This only adds new equivalence info if the called function was already
|
|
/// analyzed.
|
|
// TODO: This does not handle cyclic function call graphs etc.
|
|
static void equivalenceAnalysis(func::FuncOp funcOp,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
FuncAnalysisState &funcState) {
|
|
funcOp->walk([&](func::CallOp callOp) {
|
|
func::FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called func::FuncOp");
|
|
|
|
// No equivalence info available for the called function.
|
|
if (!funcState.equivalentFuncArgs.count(calledFunction))
|
|
return WalkResult::skip();
|
|
|
|
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
|
|
int64_t returnIdx = it.first;
|
|
int64_t bbargIdx = it.second;
|
|
Value returnVal = callOp.getResult(returnIdx);
|
|
Value argVal = callOp->getOperand(bbargIdx);
|
|
aliasInfo.unionEquivalenceClasses(returnVal, argVal);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
|
|
/// callee-caller order (i.e. callees without callers first).
|
|
/// Store the map of FuncOp to all its callers in `callerMap`.
|
|
/// Return `failure()` if a cycle of calls is detected or if we are unable to
|
|
/// retrieve the called FuncOp from any CallOpInterface.
|
|
static LogicalResult
|
|
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
|
|
SmallVectorImpl<func::FuncOp> &orderedFuncOps,
|
|
FuncCallerMap &callerMap) {
|
|
// For each FuncOp, the set of functions called by it (i.e. the union of
|
|
// symbols of all nested CallOpInterfaceOp).
|
|
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
|
|
// For each FuncOp, the number of CallOpInterface it contains.
|
|
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
|
|
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
|
|
if (!funcOp.getBody().empty()) {
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
if (!returnOp)
|
|
return funcOp->emitError()
|
|
<< "cannot bufferize a FuncOp with tensors and "
|
|
"without a unique ReturnOp";
|
|
}
|
|
|
|
numberCallOpsContainedInFuncOp[funcOp] = 0;
|
|
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
|
|
// Only support CallOp for now.
|
|
if (!isa<func::CallOp>(callOp.getOperation()))
|
|
return callOp->emitError() << "expected a CallOp";
|
|
func::FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called func::FuncOp");
|
|
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
|
|
it.first->getSecond().insert(callOp);
|
|
if (calledBy[calledFunction].count(funcOp) == 0) {
|
|
calledBy[calledFunction].insert(funcOp);
|
|
numberCallOpsContainedInFuncOp[funcOp]++;
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
});
|
|
if (res.wasInterrupted())
|
|
return failure();
|
|
// Iteratively remove function operation that do not call any of the
|
|
// functions remaining in the callCounter map and add them to the worklist.
|
|
while (!numberCallOpsContainedInFuncOp.empty()) {
|
|
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
|
|
[](auto entry) { return entry.getSecond() == 0; });
|
|
if (it == numberCallOpsContainedInFuncOp.end())
|
|
return moduleOp.emitOpError(
|
|
"expected callgraph to be free of circular dependencies.");
|
|
orderedFuncOps.push_back(it->getFirst());
|
|
for (auto callee : calledBy[it->getFirst()])
|
|
numberCallOpsContainedInFuncOp[callee]--;
|
|
numberCallOpsContainedInFuncOp.erase(it);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace linalg {
|
|
namespace comprehensive_bufferize {
|
|
namespace std_ext {
|
|
|
|
/// Return the index of the bbArg in the given func::FuncOp that is equivalent
|
|
/// to the specified return value (if any).
|
|
static Optional<int64_t> getEquivalentFuncArgIdx(func::FuncOp funcOp,
|
|
const FuncAnalysisState &state,
|
|
int64_t returnValIdx) {
|
|
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
|
|
if (funcOpIt == state.equivalentFuncArgs.end())
|
|
// No equivalence info stores for funcOp.
|
|
return None;
|
|
|
|
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
|
|
if (retValIt == funcOpIt->getSecond().end())
|
|
// Return value has no equivalent bbArg.
|
|
return None;
|
|
|
|
return retValIt->getSecond();
|
|
}
|
|
|
|
struct CallOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
|
|
func::CallOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
func::FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a func::FuncOp");
|
|
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is read.
|
|
return true;
|
|
|
|
return funcState.readBbArgs.lookup(funcOp).contains(
|
|
opOperand.getOperandNumber());
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
func::FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a func::FuncOp");
|
|
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is written.
|
|
return true;
|
|
|
|
return funcState.writtenBbArgs.lookup(funcOp).contains(
|
|
opOperand.getOperandNumber());
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
func::FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a func::FuncOp");
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::Analyzed) {
|
|
// FuncOp not analyzed yet. Any OpResult may be aliasing.
|
|
SmallVector<OpResult> result;
|
|
for (OpResult opResult : op->getOpResults())
|
|
if (opResult.getType().isa<TensorType>())
|
|
result.push_back(opResult);
|
|
return result;
|
|
}
|
|
|
|
// Get aliasing results from state.
|
|
auto aliasingReturnVals =
|
|
funcState.aliasingReturnVals.lookup(funcOp).lookup(
|
|
opOperand.getOperandNumber());
|
|
SmallVector<OpResult> result;
|
|
for (int64_t resultIdx : aliasingReturnVals)
|
|
result.push_back(callOp->getOpResult(resultIdx));
|
|
return result;
|
|
}
|
|
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
func::FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a func::FuncOp");
|
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::Analyzed) {
|
|
// FuncOp not analyzed yet. Any OpOperand may be aliasing.
|
|
SmallVector<OpOperand *> result;
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
result.push_back(&opOperand);
|
|
return result;
|
|
}
|
|
|
|
// Get aliasing bbArgs from state.
|
|
auto aliasingFuncArgs = funcState.aliasingFuncArgs.lookup(funcOp).lookup(
|
|
opResult.getResultNumber());
|
|
SmallVector<OpOperand *> result;
|
|
for (int64_t bbArgIdx : aliasingFuncArgs)
|
|
result.push_back(&callOp->getOpOperand(bbArgIdx));
|
|
return result;
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
|
|
/// All function arguments are writable. It is the responsibility of the
|
|
/// CallOp to insert buffer copies where necessary.
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
unsigned numResults = callOp.getNumResults();
|
|
unsigned numOperands = callOp->getNumOperands();
|
|
func::FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a func::FuncOp");
|
|
const FuncAnalysisState &funcState =
|
|
getFuncAnalysisState(state.getAnalysisState());
|
|
const OneShotBufferizationOptions &options =
|
|
static_cast<const OneShotBufferizationOptions &>(state.getOptions());
|
|
|
|
// Result types of the bufferized CallOp.
|
|
SmallVector<Type> resultTypes;
|
|
// Replacement values for the existing CallOp. These are usually the results
|
|
// of the bufferized CallOp, unless a tensor result folds onto an operand.
|
|
SmallVector<Value> replacementValues(numResults, Value());
|
|
// For non-tensor results: A mapping from return val indices of the old
|
|
// CallOp to return val indices of the bufferized CallOp.
|
|
SmallVector<Optional<unsigned>> retValMapping(numResults, None);
|
|
// Operands of the bufferized CallOp.
|
|
SmallVector<Value> newOperands(numOperands, Value());
|
|
|
|
// Based on previously gathered equivalence information, we know if a
|
|
// tensor result folds onto an operand. These are the only tensor value
|
|
// results that are supported at the moment.
|
|
//
|
|
// For tensors return values that do not fold onto an operand, additional
|
|
// work is needed (TODO) to either:
|
|
// * hoist a result into an inplaceable operand or
|
|
// * devise a better representation to truly return a buffer.
|
|
//
|
|
// Note: If a function has no body, no equivalence information is
|
|
// available. Consequently, a tensor return value cannot be proven to fold
|
|
// onto a func::FuncOp bbArg, so calls to such functions are not
|
|
// bufferizable at the moment.
|
|
|
|
// 1. Compute the result types of the new CallOp. Tensor results that are
|
|
// equivalent to a func::FuncOp bbArg are no longer returned.
|
|
for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
|
|
unsigned returnValIdx = it.index();
|
|
Type returnType = it.value();
|
|
if (!returnType.isa<TensorType>()) {
|
|
// Non-tensor values are returned.
|
|
retValMapping[returnValIdx] = resultTypes.size();
|
|
resultTypes.push_back(returnType);
|
|
continue;
|
|
}
|
|
|
|
if (Optional<int64_t> bbArgIdx =
|
|
getEquivalentFuncArgIdx(funcOp, funcState, returnValIdx)) {
|
|
// Return operands that are equivalent to some bbArg, are not
|
|
// returned.
|
|
FailureOr<Value> bufferOrFailure =
|
|
state.getBuffer(rewriter, callOp->getOpOperand(*bbArgIdx));
|
|
if (failed(bufferOrFailure))
|
|
return failure();
|
|
replacementValues[returnValIdx] = *bufferOrFailure;
|
|
newOperands[*bbArgIdx] = *bufferOrFailure;
|
|
continue;
|
|
}
|
|
|
|
if (!options.allowReturnAllocs)
|
|
return callOp->emitError(
|
|
"call to FuncOp that returns non-equivalent tensors not supported");
|
|
|
|
// Returning a memref. This memref is not equivalent to any bbArg. It is
|
|
// likely a newly allocated buffer. We may want to hoist such allocations
|
|
// to the call site in the future.
|
|
retValMapping[returnValIdx] = resultTypes.size();
|
|
resultTypes.push_back(
|
|
funcOp.getFunctionType().getResult(resultTypes.size()));
|
|
}
|
|
|
|
// 2. Get the bufferized FunctionType of the called function. Recursive or
|
|
// circular call graphs are not currently supported, so we can be sure that
|
|
// the called function was already bufferized.
|
|
FunctionType bufferizedFuncType = funcOp.getFunctionType();
|
|
|
|
// 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
|
|
for (OpOperand &opOperand : callOp->getOpOperands()) {
|
|
unsigned idx = opOperand.getOperandNumber();
|
|
Value tensorOperand = opOperand.get();
|
|
|
|
// Non-tensor operands are just copied.
|
|
if (!tensorOperand.getType().isa<TensorType>()) {
|
|
newOperands[idx] = tensorOperand;
|
|
continue;
|
|
}
|
|
|
|
// Retrieve buffers for tensor operands. Tensor operand buffers, who's
|
|
// corresponding func::FuncOp bbArgs are equivalent to a returned tensor,
|
|
// were already stored in `newOperands` during Step 1.
|
|
Value buffer = newOperands[idx];
|
|
if (!buffer) {
|
|
FailureOr<Value> bufferOrFailure = state.getBuffer(rewriter, opOperand);
|
|
if (failed(bufferOrFailure))
|
|
return failure();
|
|
buffer = *bufferOrFailure;
|
|
}
|
|
|
|
// Caller / callee type mismatch is handled with a CastOp.
|
|
auto memRefType = bufferizedFuncType.getInput(idx);
|
|
// Since we don't yet have a clear layout story, to_memref may
|
|
// conservatively turn tensors into more dynamic memref than necessary.
|
|
// If the memref type of the callee fails, introduce an extra memref.cast
|
|
// that will either canonicalize away or fail compilation until we can do
|
|
// something better.
|
|
if (buffer.getType() != memRefType) {
|
|
assert(
|
|
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
|
|
"CallOp::bufferize: cast incompatible");
|
|
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
|
|
memRefType, buffer);
|
|
buffer = castBuffer;
|
|
}
|
|
newOperands[idx] = buffer;
|
|
}
|
|
|
|
// 4. Create the new CallOp.
|
|
Operation *newCallOp = rewriter.create<func::CallOp>(
|
|
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
|
|
newCallOp->setAttrs(callOp->getAttrs());
|
|
// Get replacement values for non-tensor / non-equivalent results.
|
|
for (unsigned i = 0; i < replacementValues.size(); ++i) {
|
|
if (replacementValues[i])
|
|
continue;
|
|
replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
|
|
}
|
|
|
|
// 5. Replace the old op with the new op.
|
|
replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ReturnOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
|
|
func::ReturnOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
#ifndef NDEBUG
|
|
auto returnOp = cast<func::ReturnOp>(op);
|
|
assert(isa<func::FuncOp>(returnOp->getParentOp()) &&
|
|
"only support FuncOp parent for ReturnOp");
|
|
#endif // NDEBUG
|
|
|
|
// ReturnOps are bufferized as part of FuncOps.
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
struct FuncOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<FuncOpInterface,
|
|
func::FuncOp> {
|
|
/// Rewrite function bbArgs and return values into buffer form (using the
|
|
/// canonical memref layout for now). This function bufferizes the function
|
|
/// signature and the ReturnOp. When the entire function body has been
|
|
/// bufferized, function return types can be switched to more concise memref
|
|
/// types as part of `foldMemRefCasts`.
|
|
///
|
|
/// When a tensor function argument is known to be equivalent to a tensor
|
|
/// result, it is dropped from the return values.
|
|
///
|
|
/// All function bbArgs are writable unless they are explicitly marked as
|
|
/// read-only. Callers must insert copies when needed.
|
|
///
|
|
/// Note: Returning a memref is possible, but corresponding CallOp
|
|
/// bufferizations fail unless `allowReturnAllocs`.
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
auto funcOp = cast<func::FuncOp>(op);
|
|
FunctionType funcType = funcOp.getFunctionType();
|
|
const FuncAnalysisState &moduleState =
|
|
getFuncAnalysisState(state.getAnalysisState());
|
|
const BufferizationOptions &options = state.getOptions();
|
|
|
|
// Construct the bufferized function type.
|
|
SmallVector<Type> argTypes;
|
|
for (const auto &it : llvm::enumerate(funcType.getInputs())) {
|
|
Type argType = it.value();
|
|
if (auto tensorType = argType.dyn_cast<TensorType>()) {
|
|
argTypes.push_back(
|
|
getBufferizedFunctionArgType(funcOp, it.index(), options));
|
|
continue;
|
|
}
|
|
argTypes.push_back(argType);
|
|
}
|
|
|
|
// Bodiless functions are assumed opaque and we cannot know the
|
|
// bufferization contract they want to enforce. As a consequence, only
|
|
// support functions that don't return any tensors atm.
|
|
if (funcOp.getBody().empty()) {
|
|
SmallVector<Type> retTypes;
|
|
for (Type resultType : funcType.getResults()) {
|
|
if (resultType.isa<TensorType>())
|
|
return funcOp->emitError() << "cannot bufferize bodiless function "
|
|
<< "that returns a tensor";
|
|
retTypes.push_back(resultType);
|
|
}
|
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
|
|
return success();
|
|
}
|
|
|
|
// TODO: Support functions with multiple returns.
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
// 1. Rewrite the bbArgs. Turn every tensor bbArg into a memref bbArg.
|
|
Block &frontBlock = funcOp.getBody().front();
|
|
for (BlockArgument &bbArg : frontBlock.getArguments()) {
|
|
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
|
|
// Non-tensor types stay the same.
|
|
if (!tensorType)
|
|
continue;
|
|
|
|
// Collect all uses of the bbArg.
|
|
SmallVector<OpOperand *> bbArgUses;
|
|
for (OpOperand &use : bbArg.getUses())
|
|
bbArgUses.push_back(&use);
|
|
|
|
// Change the bbArg type to memref.
|
|
Type memrefType =
|
|
getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), options);
|
|
bbArg.setType(memrefType);
|
|
|
|
// Replace all uses of the original tensor bbArg.
|
|
rewriter.setInsertionPointToStart(&frontBlock);
|
|
if (!bbArgUses.empty()) {
|
|
// Insert to_tensor because the remaining function body has not been
|
|
// bufferized yet.
|
|
Value toTensorOp =
|
|
rewriter.create<bufferization::ToTensorOp>(funcOp.getLoc(), bbArg);
|
|
for (OpOperand *use : bbArgUses)
|
|
use->set(toTensorOp);
|
|
}
|
|
}
|
|
|
|
// 2. For each result, keep track of which inplace argument it reuses.
|
|
SmallVector<Value> returnValues;
|
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
|
Value returnVal = returnOperand.get();
|
|
|
|
// If not a tensor type just forward it.
|
|
if (!returnVal.getType().isa<RankedTensorType>()) {
|
|
returnValues.push_back(returnVal);
|
|
continue;
|
|
}
|
|
|
|
// If return operand is equivalent to some bbArg, no need to return it.
|
|
if (Optional<int64_t> equivBbArgIdx = getEquivalentFuncArgIdx(
|
|
funcOp, moduleState, returnOperand.getOperandNumber())) {
|
|
rewriter.setInsertionPoint(returnOp);
|
|
Location loc = returnOp.getLoc();
|
|
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
|
|
loc, getMemRefType(returnVal.getType().cast<TensorType>(), options),
|
|
returnVal);
|
|
BlockArgument equivBbArg = funcOp.getArgument(*equivBbArgIdx);
|
|
// Note: This copy will fold away. It must be inserted here to ensure
|
|
// that `returnVal` still has at least one use and does not fold away.
|
|
if (failed(
|
|
createMemCpy(rewriter, loc, toMemrefOp, equivBbArg, options)))
|
|
return funcOp->emitError("could not generate copy for bbArg");
|
|
continue;
|
|
}
|
|
|
|
returnValues.push_back(*state.getBuffer(rewriter, returnOperand));
|
|
}
|
|
|
|
// 3. Rewrite the terminator without the in-place bufferizable values.
|
|
returnOp.operandsMutable().assign(returnValues);
|
|
|
|
// 4. Rewrite the FuncOp type to buffer form.
|
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes,
|
|
ValueRange(returnValues).getTypes()));
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return `true` if the given function argument is writable.
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
auto funcOp = cast<func::FuncOp>(op);
|
|
BlockArgument bbArg = value.dyn_cast<BlockArgument>();
|
|
assert(bbArg && "expected BlockArgument");
|
|
|
|
// "linalg.inplaceable" overrides other writability decisions. This is
|
|
// currently used for testing only.
|
|
if (BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
|
|
bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName))
|
|
return inplaceAttr.getValue();
|
|
|
|
// All function arguments are writable by default.
|
|
return true;
|
|
}
|
|
|
|
bool isAllocationHoistingBarrier(Operation *op) const { return true; }
|
|
};
|
|
|
|
} // namespace std_ext
|
|
} // namespace comprehensive_bufferize
|
|
} // namespace linalg
|
|
} // namespace mlir
|
|
|
|
void mlir::linalg::comprehensive_bufferize::std_ext::
|
|
registerModuleBufferizationExternalModels(DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
|
|
func::CallOp::attachInterface<std_ext::CallOpInterface>(*ctx);
|
|
func::ReturnOp::attachInterface<std_ext::ReturnOpInterface>(*ctx);
|
|
func::FuncOp::attachInterface<std_ext::FuncOpInterface>(*ctx);
|
|
});
|
|
}
|
|
|
|
/// Set the attribute that triggers inplace bufferization on a func::FuncOp
|
|
/// argument `bbArg`.
|
|
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
|
|
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.setArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName,
|
|
BoolAttr::get(bbArg.getContext(), inPlace));
|
|
}
|
|
|
|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
|
|
static void annotateOpsWithBufferizationMarkers(func::FuncOp funcOp,
|
|
const AnalysisState &state) {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(funcOp.getOperation());
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<TensorType>())
|
|
setInPlaceFuncArgument(bbArg, bufferizableOp.isWritable(bbArg, state));
|
|
}
|
|
|
|
/// Fold return values that are memref casts and update function return types.
|
|
///
|
|
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
|
|
/// is not known yet. Therefore, the bufferization uses memref types with the
|
|
/// most generic layout map as function return types. After bufferizing the
|
|
/// entire function body, a more concise memref type can potentially be used for
|
|
/// the return type of the function.
|
|
static void foldMemRefCasts(func::FuncOp funcOp) {
|
|
if (funcOp.getBody().empty())
|
|
return;
|
|
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
SmallVector<Type> resultTypes;
|
|
|
|
for (OpOperand &operand : returnOp->getOpOperands()) {
|
|
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
|
|
operand.set(castOp.source());
|
|
resultTypes.push_back(castOp.source().getType());
|
|
} else {
|
|
resultTypes.push_back(operand.get().getType());
|
|
}
|
|
}
|
|
|
|
auto newFuncType = FunctionType::get(
|
|
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
|
|
funcOp.setType(newFuncType);
|
|
}
|
|
|
|
LogicalResult mlir::linalg::comprehensive_bufferize::runModuleBufferize(
|
|
ModuleOp moduleOp, OneShotBufferizationOptions options) {
|
|
IRRewriter rewriter(moduleOp.getContext());
|
|
OneShotAnalysisState analysisState(moduleOp, options);
|
|
BufferizationState bufferizationState(analysisState);
|
|
FuncAnalysisState &funcState = getFuncAnalysisState(analysisState);
|
|
BufferizationAliasInfo &aliasInfo = analysisState.getAliasInfo();
|
|
|
|
// A list of functions in the order in which they are analyzed + bufferized.
|
|
SmallVector<func::FuncOp> orderedFuncOps;
|
|
|
|
// A mapping of FuncOps to their callers.
|
|
FuncCallerMap callerMap;
|
|
|
|
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
|
|
return failure();
|
|
|
|
// Collect bbArg/return value information after the analysis.
|
|
options.addPostAnalysisStep(aliasingFuncOpBBArgsAnalysis);
|
|
options.addPostAnalysisStep(funcOpBbArgReadWriteAnalysis);
|
|
|
|
// Analyze ops.
|
|
for (func::FuncOp funcOp : orderedFuncOps) {
|
|
// No body => no analysis.
|
|
if (funcOp.getBody().empty())
|
|
continue;
|
|
|
|
// Now analyzing function.
|
|
funcState.startFunctionAnalysis(funcOp);
|
|
|
|
// Gather equivalence info for CallOps.
|
|
equivalenceAnalysis(funcOp, aliasInfo, funcState);
|
|
|
|
// Analyze funcOp.
|
|
if (failed(analyzeOp(funcOp, analysisState)))
|
|
return failure();
|
|
|
|
// Mark op as fully analyzed.
|
|
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
|
|
|
|
// Add annotations to function arguments.
|
|
if (options.testAnalysisOnly)
|
|
annotateOpsWithBufferizationMarkers(funcOp, analysisState);
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
// Bufferize functions.
|
|
for (func::FuncOp funcOp : orderedFuncOps) {
|
|
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
|
|
// would be invalidated.
|
|
if (failed(bufferizeOp(funcOp, bufferizationState)))
|
|
return failure();
|
|
foldMemRefCasts(funcOp);
|
|
}
|
|
|
|
// Check result.
|
|
for (func::FuncOp funcOp : orderedFuncOps) {
|
|
if (!options.allowReturnAllocs &&
|
|
llvm::any_of(funcOp.getFunctionType().getResults(), [](Type t) {
|
|
return t.isa<MemRefType, UnrankedMemRefType>();
|
|
})) {
|
|
funcOp->emitError("memref return type is unsupported");
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Finalize all buffers.
|
|
if (failed(finalizeBuffers(moduleOp, options)))
|
|
return failure();
|
|
|
|
// Post-pass cleanup of inplaceable and buffer_layout attributes.
|
|
moduleOp.walk([&](func::FuncOp op) {
|
|
for (BlockArgument bbArg : op.getArguments())
|
|
removeBufferizationFuncArguments(bbArg);
|
|
});
|
|
|
|
return success();
|
|
}
|