Change all the cstval_pred_ty based PatternMatch helpers (things like m_AllOnes and m_Zero) to only allow poison elements inside vector splats, not undef elements. Historically, we used to represent non-demanded elements in vectors using undef. Nowadays, we use poison instead. As such, I believe that support for undef in vector splats is no longer useful. At the same time, while poison splat elements are pretty much always safe to ignore, this is not generally the case for undef elements. We have existing miscompiles in our tests due to this (see the masked-merge-*.ll tests changed here) and it's easy to miss such cases in the future, now that we write tests using poison instead of undef elements. I think overall, keeping support for undef elements no longer makes sense, and we should drop it. Once this is done consistently, I think we may also consider allowing poison in m_APInt by default, as doing that change is much less risky than doing the same with undef. This change involves a substantial amount of test changes. For most tests, I've just replaced undef with poison, as I don't think there is value in retaining both. For some tests (where the distinction between undef and poison is important), I've duplicated tests.
491 lines
12 KiB
LLVM
491 lines
12 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt < %s -passes=instsimplify -S | FileCheck %s
|
|
|
|
define i32 @zero_dividend(i32 %A) {
|
|
; CHECK-LABEL: @zero_dividend(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%B = urem i32 0, %A
|
|
ret i32 %B
|
|
}
|
|
|
|
define <2 x i32> @zero_dividend_vector(<2 x i32> %A) {
|
|
; CHECK-LABEL: @zero_dividend_vector(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%B = srem <2 x i32> zeroinitializer, %A
|
|
ret <2 x i32> %B
|
|
}
|
|
|
|
define <2 x i32> @zero_dividend_vector_poison_elt(<2 x i32> %A) {
|
|
; CHECK-LABEL: @zero_dividend_vector_poison_elt(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%B = urem <2 x i32> <i32 poison, i32 0>, %A
|
|
ret <2 x i32> %B
|
|
}
|
|
|
|
; Division-by-zero is poison. UB in any vector lane means the whole op is poison.
|
|
|
|
define <2 x i8> @srem_zero_elt_vec_constfold(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_zero_elt_vec_constfold(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = srem <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_zero_elt_vec_constfold(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_zero_elt_vec_constfold(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = urem <2 x i8> <i8 1, i8 2>, <i8 42, i8 0>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @srem_zero_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_zero_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = srem <2 x i8> %x, <i8 -42, i8 0>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_zero_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_zero_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = urem <2 x i8> %x, <i8 0, i8 42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @srem_undef_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @srem_undef_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = srem <2 x i8> %x, <i8 -42, i8 undef>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
define <2 x i8> @urem_undef_elt_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @urem_undef_elt_vec(
|
|
; CHECK-NEXT: ret <2 x i8> poison
|
|
;
|
|
%rem = urem <2 x i8> %x, <i8 undef, i8 42>
|
|
ret <2 x i8> %rem
|
|
}
|
|
|
|
; Division-by-zero is undef. UB in any vector lane means the whole op is undef.
|
|
; Thus, we can simplify this: if any element of 'y' is 0, we can do anything.
|
|
; Therefore, assume that all elements of 'y' must be 1.
|
|
|
|
define <2 x i1> @srem_bool_vec(<2 x i1> %x, <2 x i1> %y) {
|
|
; CHECK-LABEL: @srem_bool_vec(
|
|
; CHECK-NEXT: ret <2 x i1> zeroinitializer
|
|
;
|
|
%rem = srem <2 x i1> %x, %y
|
|
ret <2 x i1> %rem
|
|
}
|
|
|
|
define <2 x i1> @urem_bool_vec(<2 x i1> %x, <2 x i1> %y) {
|
|
; CHECK-LABEL: @urem_bool_vec(
|
|
; CHECK-NEXT: ret <2 x i1> zeroinitializer
|
|
;
|
|
%rem = urem <2 x i1> %x, %y
|
|
ret <2 x i1> %rem
|
|
}
|
|
|
|
define <2 x i32> @zext_bool_urem_divisor_vec(<2 x i1> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @zext_bool_urem_divisor_vec(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%ext = zext <2 x i1> %x to <2 x i32>
|
|
%r = urem <2 x i32> %y, %ext
|
|
ret <2 x i32> %r
|
|
}
|
|
|
|
define i32 @zext_bool_srem_divisor(i1 %x, i32 %y) {
|
|
; CHECK-LABEL: @zext_bool_srem_divisor(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%ext = zext i1 %x to i32
|
|
%r = srem i32 %y, %ext
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @select1(i32 %x, i1 %b) {
|
|
; CHECK-LABEL: @select1(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%rhs = select i1 %b, i32 %x, i32 1
|
|
%rem = srem i32 %x, %rhs
|
|
ret i32 %rem
|
|
}
|
|
|
|
define i32 @select2(i32 %x, i1 %b) {
|
|
; CHECK-LABEL: @select2(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%rhs = select i1 %b, i32 %x, i32 1
|
|
%rem = urem i32 %x, %rhs
|
|
ret i32 %rem
|
|
}
|
|
|
|
define i32 @rem1(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem1(
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mod = srem i32 %x, %n
|
|
%mod1 = srem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @rem2(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem2(
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mod = urem i32 %x, %n
|
|
%mod1 = urem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @rem3(i32 %x, i32 %n) {
|
|
; CHECK-LABEL: @rem3(
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]]
|
|
; CHECK-NEXT: [[MOD1:%.*]] = urem i32 [[MOD]], [[N]]
|
|
; CHECK-NEXT: ret i32 [[MOD1]]
|
|
;
|
|
%mod = srem i32 %x, %n
|
|
%mod1 = urem i32 %mod, %n
|
|
ret i32 %mod1
|
|
}
|
|
|
|
define i32 @urem_dividend_known_smaller_than_constant_divisor(i32 %x) {
|
|
; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250
|
|
; CHECK-NEXT: ret i32 [[AND]]
|
|
;
|
|
%and = and i32 %x, 250
|
|
%r = urem i32 %and, 251
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_dividend_known_smaller_than_constant_divisor(i32 %x) {
|
|
; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], 251
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 251
|
|
%r = urem i32 %and, 251
|
|
ret i32 %r
|
|
}
|
|
|
|
define i8 @urem_dividend_known_smaller_than_constant_divisor2(i1 %b) {
|
|
; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor2(
|
|
; CHECK-NEXT: [[T0:%.*]] = zext i1 [[B:%.*]] to i8
|
|
; CHECK-NEXT: [[XOR:%.*]] = xor i8 [[T0]], 12
|
|
; CHECK-NEXT: ret i8 [[XOR]]
|
|
;
|
|
%t0 = zext i1 %b to i8
|
|
%xor = xor i8 %t0, 12
|
|
%r = urem i8 %xor, 14
|
|
ret i8 %r
|
|
}
|
|
|
|
; negative test - dividend can equal 13
|
|
|
|
define i8 @not_urem_dividend_known_smaller_than_constant_divisor2(i1 %b) {
|
|
; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor2(
|
|
; CHECK-NEXT: [[T0:%.*]] = zext i1 [[B:%.*]] to i8
|
|
; CHECK-NEXT: [[XOR:%.*]] = xor i8 [[T0]], 12
|
|
; CHECK-NEXT: [[R:%.*]] = urem i8 [[XOR]], 13
|
|
; CHECK-NEXT: ret i8 [[R]]
|
|
;
|
|
%t0 = zext i1 %b to i8
|
|
%xor = xor i8 %t0, 12
|
|
%r = urem i8 %xor, 13
|
|
ret i8 %r
|
|
}
|
|
|
|
define i32 @urem_constant_dividend_known_smaller_than_divisor(i32 %x) {
|
|
; CHECK-LABEL: @urem_constant_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: ret i32 250
|
|
;
|
|
%or = or i32 %x, 251
|
|
%r = urem i32 250, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_constant_dividend_known_smaller_than_divisor(i32 %x) {
|
|
; CHECK-LABEL: @not_urem_constant_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 251, [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%or = or i32 %x, 251
|
|
%r = urem i32 251, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
; This would require computing known bits on both x and y. Is it worth doing?
|
|
|
|
define i32 @urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @urem_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 250
|
|
%or = or i32 %y, 251
|
|
%r = urem i32 %and, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
define i32 @not_urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @not_urem_dividend_known_smaller_than_divisor(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251
|
|
; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251
|
|
; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]]
|
|
; CHECK-NEXT: ret i32 [[R]]
|
|
;
|
|
%and = and i32 %x, 251
|
|
%or = or i32 %y, 251
|
|
%r = urem i32 %and, %or
|
|
ret i32 %r
|
|
}
|
|
|
|
declare i32 @external()
|
|
|
|
define i32 @rem4() {
|
|
; CHECK-LABEL: @rem4(
|
|
; CHECK-NEXT: [[CALL:%.*]] = call i32 @external(), !range [[RNG0:![0-9]+]]
|
|
; CHECK-NEXT: ret i32 [[CALL]]
|
|
;
|
|
%call = call i32 @external(), !range !0
|
|
%urem = urem i32 %call, 3
|
|
ret i32 %urem
|
|
}
|
|
|
|
!0 = !{i32 0, i32 3}
|
|
|
|
define i32 @rem5(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem5(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%shl = shl nsw i32 %x, %y
|
|
%mod = srem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define <2 x i32> @rem6(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @rem6(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%shl = shl nsw <2 x i32> %x, %y
|
|
%mod = srem <2 x i32> %shl, %x
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
; make sure the previous fold doesn't take place for wrapped shifts
|
|
|
|
define i32 @rem7(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem7(
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[SHL]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%shl = shl i32 %x, %y
|
|
%mod = srem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @rem8(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem8(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%shl = shl nuw i32 %x, %y
|
|
%mod = urem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define <2 x i32> @rem9(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @rem9(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%shl = shl nuw <2 x i32> %x, %y
|
|
%mod = urem <2 x i32> %shl, %x
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
; make sure the previous fold doesn't take place for wrapped shifts
|
|
|
|
define i32 @rem10(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @rem10(
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[SHL]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%shl = shl i32 %x, %y
|
|
%mod = urem i32 %shl, %x
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @srem_with_sext_bool_divisor(i1 %x, i32 %y) {
|
|
; CHECK-LABEL: @srem_with_sext_bool_divisor(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%s = sext i1 %x to i32
|
|
%r = srem i32 %y, %s
|
|
ret i32 %r
|
|
}
|
|
|
|
define <2 x i32> @srem_with_sext_bool_divisor_vec(<2 x i1> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @srem_with_sext_bool_divisor_vec(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%s = sext <2 x i1> %x to <2 x i32>
|
|
%r = srem <2 x i32> %y, %s
|
|
ret <2 x i32> %r
|
|
}
|
|
|
|
define i8 @srem_minusone_divisor() {
|
|
; CHECK-LABEL: @srem_minusone_divisor(
|
|
; CHECK-NEXT: ret i8 poison
|
|
;
|
|
%v = srem i8 -128, -1
|
|
ret i8 %v
|
|
}
|
|
|
|
define i32 @srem_of_mul_nsw(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @srem_of_mul_nsw(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%mul = mul nsw i32 %x, %y
|
|
%mod = srem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
; Verify that the optimization kicks in for:
|
|
; - Y * X % Y as well as X * Y % Y
|
|
; - vector types
|
|
define <2 x i32> @srem_of_mul_nsw_vec_commuted(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @srem_of_mul_nsw_vec_commuted(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%mul = mul nsw <2 x i32> %y, %x
|
|
%mod = srem <2 x i32> %mul, %y
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
define i32 @srem_of_mul_nuw(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @srem_of_mul_nuw(
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mul = mul nuw i32 %x, %y
|
|
%mod = srem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @srem_of_mul(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @srem_of_mul(
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mul = mul i32 %x, %y
|
|
%mod = srem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @urem_of_mul_nsw(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @urem_of_mul_nsw(
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mul = mul nsw i32 %x, %y
|
|
%mod = urem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i32 @urem_of_mul_nuw(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @urem_of_mul_nuw(
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
%mul = mul nuw i32 %x, %y
|
|
%mod = urem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
define <2 x i32> @srem_of_mul_nuw_vec_commuted(<2 x i32> %x, <2 x i32> %y) {
|
|
; CHECK-LABEL: @srem_of_mul_nuw_vec_commuted(
|
|
; CHECK-NEXT: ret <2 x i32> zeroinitializer
|
|
;
|
|
%mul = mul nuw <2 x i32> %y, %x
|
|
%mod = urem <2 x i32> %mul, %y
|
|
ret <2 x i32> %mod
|
|
}
|
|
|
|
define i32 @urem_of_mul(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @urem_of_mul(
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i32 [[MOD]]
|
|
;
|
|
%mul = mul i32 %x, %y
|
|
%mod = urem i32 %mul, %y
|
|
ret i32 %mod
|
|
}
|
|
|
|
define i4 @srem_mul_sdiv(i4 %x, i4 %y) {
|
|
; CHECK-LABEL: @srem_mul_sdiv(
|
|
; CHECK-NEXT: ret i4 0
|
|
;
|
|
%d = sdiv i4 %x, %y
|
|
%mul = mul i4 %d, %y
|
|
%mod = srem i4 %mul, %y
|
|
ret i4 %mod
|
|
}
|
|
|
|
define i8 @srem_mul_udiv(i8 %x, i8 %y) {
|
|
; CHECK-LABEL: @srem_mul_udiv(
|
|
; CHECK-NEXT: [[D:%.*]] = udiv i8 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[D]], [[Y]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = srem i8 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i8 [[MOD]]
|
|
;
|
|
%d = udiv i8 %x, %y
|
|
%mul = mul i8 %d, %y
|
|
%mod = srem i8 %mul, %y
|
|
ret i8 %mod
|
|
}
|
|
|
|
define <3 x i7> @urem_mul_udiv_vec_commuted(<3 x i7> %x, <3 x i7> %y) {
|
|
; CHECK-LABEL: @urem_mul_udiv_vec_commuted(
|
|
; CHECK-NEXT: ret <3 x i7> zeroinitializer
|
|
;
|
|
%d = udiv <3 x i7> %x, %y
|
|
%mul = mul <3 x i7> %y, %d
|
|
%mod = urem <3 x i7> %mul, %y
|
|
ret <3 x i7> %mod
|
|
}
|
|
|
|
define i8 @urem_mul_sdiv(i8 %x, i8 %y) {
|
|
; CHECK-LABEL: @urem_mul_sdiv(
|
|
; CHECK-NEXT: [[D:%.*]] = sdiv i8 [[X:%.*]], [[Y:%.*]]
|
|
; CHECK-NEXT: [[MUL:%.*]] = mul i8 [[Y]], [[D]]
|
|
; CHECK-NEXT: [[MOD:%.*]] = urem i8 [[MUL]], [[Y]]
|
|
; CHECK-NEXT: ret i8 [[MOD]]
|
|
;
|
|
%d = sdiv i8 %x, %y
|
|
%mul = mul i8 %y, %d
|
|
%mod = urem i8 %mul, %y
|
|
ret i8 %mod
|
|
}
|