Files
clang-p2996/mlir/test/Dialect/Vector/transform-vector.mlir
srcarroll 2c1c67674c [mlir][transform] Consistent linalg transform op syntax for dynamic index lists (#90897)
This patch is a first pass at making consistent syntax across the
`LinalgTransformOp`s that use dynamic index lists for size parameters.
Previously, there were two different forms: inline types in the list, or
place them in the functional style tuple. This patch goes for the
latter.

In order to do this, the `printPackedOrDynamicIndexList`,
`printDynamicIndexList` and their `parse` counterparts were modified so
that the types can be optionally provided to the corresponding custom
directives.

All affected ops now use tablegen `assemblyFormat`, so custom
`parse`/`print` functions have been removed. There are a couple ops that
will likely add dynamic size support, and once that happens it should be
made sure that the assembly remains consistent with the changes in this
patch.

The affected ops are as follows: `pack`, `pack_greedily`,
`tile_using_forall`. The `tile_using_for` and `vectorize` ops already
used this syntax, but their custom assembly was removed.

---------

Co-authored-by: Oleksandr "Alex" Zinenko <ftynse@gmail.com>
2024-05-08 09:11:53 -05:00

95 lines
4.6 KiB
MLIR

// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s
// CHECK-LABEL: func @matmul_tensors
func.func @matmul_tensors(
%arg0: tensor<8x16xf32>, %arg1: tensor<16x32xf32>, %arg2: tensor<8x32xf32>)
-> tensor<8x32xf32> {
// CHECK-NOT: linalg
// CHECK: vector.extract {{.*}} : vector<4xf32> from vector<8x4xf32>
// CHECK: vector.store {{.*}} : memref<8x32xf32>, vector<4xf32>
%0 = linalg.matmul ins(%arg0, %arg1: tensor<8x16xf32>, tensor<16x32xf32>)
outs(%arg2: tensor<8x32xf32>)
-> tensor<8x32xf32>
return %0 : tensor<8x32xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.consumed}) {
%0 = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.any_op
%1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [8, 4, 2]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
%2 = transform.get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op
%b = transform.bufferization.one_shot_bufferize
layout{IdentityLayoutMap} %module_op
{bufferize_function_boundaries = true, allow_return_allocs = true}
: (!transform.any_op) -> !transform.any_op
%f = transform.structured.match ops{["func.func"]} in %b
: (!transform.any_op) -> !transform.any_op
// TODO: group these lower-level controls into various properly named vector
// lowering TD macros.
transform.apply_patterns to %f {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerparallel"
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "linalg-copy"
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.lower_transfer max_transfer_rank = 1
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.lower_shape_cast
} : !transform.any_op
transform.apply_patterns to %f {
transform.apply_patterns.vector.lower_transpose lowering_strategy = "shuffle_1d"
} : !transform.any_op
transform.yield
}
}
// -----
// CHECK-DAG: #[[$map0:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK-DAG: #[[$map1:.*]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK-DAG: #[[$map2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @fold_arith_extf_into_contract
// CHECK-SAME: (%[[ARG0:.*]]: vector<64x64xf16>, %[[ARG1:.*]]: vector<64x64xf16>, %[[ARG2:.*]]: vector<64x64xf32>)
// CHECK-NEXT: %[[R:.+]] = vector.contract {indexing_maps = [#[[$map0]], #[[$map1]], #[[$map2]]],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind<add>}
// CHECK-SAME: %[[ARG0]], %[[ARG1]], %[[ARG2]] : vector<64x64xf16>, vector<64x64xf16> into vector<64x64xf32>
// CHECK-NEXT: return %[[R]] : vector<64x64xf32>
func.func @fold_arith_extf_into_contract(%arg0: vector<64x64xf16>, %arg1: vector<64x64xf16>, %arg2: vector<64x64xf32>) -> vector<64x64xf32> {
%lhs_f32 = arith.extf %arg0 : vector<64x64xf16> to vector<64x64xf32>
%rhs_f32 = arith.extf %arg1 : vector<64x64xf16> to vector<64x64xf32>
%result = vector.contract {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind<add>} %lhs_f32, %rhs_f32, %arg2 : vector<64x64xf32>, vector<64x64xf32> into vector<64x64xf32>
return %result : vector<64x64xf32>
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
%func = transform.structured.match ops{["func.func"]} in %module_op : (!transform.any_op) -> !transform.any_op
transform.apply_patterns to %func {
transform.apply_patterns.vector.fold_arith_extension
} : !transform.any_op
transform.yield
}
}