This patch is a first pass at making consistent syntax across the `LinalgTransformOp`s that use dynamic index lists for size parameters. Previously, there were two different forms: inline types in the list, or place them in the functional style tuple. This patch goes for the latter. In order to do this, the `printPackedOrDynamicIndexList`, `printDynamicIndexList` and their `parse` counterparts were modified so that the types can be optionally provided to the corresponding custom directives. All affected ops now use tablegen `assemblyFormat`, so custom `parse`/`print` functions have been removed. There are a couple ops that will likely add dynamic size support, and once that happens it should be made sure that the assembly remains consistent with the changes in this patch. The affected ops are as follows: `pack`, `pack_greedily`, `tile_using_forall`. The `tile_using_for` and `vectorize` ops already used this syntax, but their custom assembly was removed. --------- Co-authored-by: Oleksandr "Alex" Zinenko <ftynse@gmail.com>
95 lines
4.6 KiB
MLIR
95 lines
4.6 KiB
MLIR
// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s
|
|
|
|
// CHECK-LABEL: func @matmul_tensors
|
|
func.func @matmul_tensors(
|
|
%arg0: tensor<8x16xf32>, %arg1: tensor<16x32xf32>, %arg2: tensor<8x32xf32>)
|
|
-> tensor<8x32xf32> {
|
|
// CHECK-NOT: linalg
|
|
// CHECK: vector.extract {{.*}} : vector<4xf32> from vector<8x4xf32>
|
|
// CHECK: vector.store {{.*}} : memref<8x32xf32>, vector<4xf32>
|
|
%0 = linalg.matmul ins(%arg0, %arg1: tensor<8x16xf32>, tensor<16x32xf32>)
|
|
outs(%arg2: tensor<8x32xf32>)
|
|
-> tensor<8x32xf32>
|
|
return %0 : tensor<8x32xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.consumed}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.any_op
|
|
%1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [8, 4, 2]
|
|
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
|
|
%2 = transform.get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op
|
|
%b = transform.bufferization.one_shot_bufferize
|
|
layout{IdentityLayoutMap} %module_op
|
|
{bufferize_function_boundaries = true, allow_return_allocs = true}
|
|
: (!transform.any_op) -> !transform.any_op
|
|
|
|
%f = transform.structured.match ops{["func.func"]} in %b
|
|
: (!transform.any_op) -> !transform.any_op
|
|
|
|
// TODO: group these lower-level controls into various properly named vector
|
|
// lowering TD macros.
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.transfer_permutation_patterns
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerparallel"
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "linalg-copy"
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.lower_transfer max_transfer_rank = 1
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.lower_shape_cast
|
|
} : !transform.any_op
|
|
|
|
transform.apply_patterns to %f {
|
|
transform.apply_patterns.vector.lower_transpose lowering_strategy = "shuffle_1d"
|
|
} : !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-DAG: #[[$map0:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
|
|
// CHECK-DAG: #[[$map1:.*]] = affine_map<(d0, d1, d2) -> (d2, d1)>
|
|
// CHECK-DAG: #[[$map2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
|
|
// CHECK-LABEL: func.func @fold_arith_extf_into_contract
|
|
// CHECK-SAME: (%[[ARG0:.*]]: vector<64x64xf16>, %[[ARG1:.*]]: vector<64x64xf16>, %[[ARG2:.*]]: vector<64x64xf32>)
|
|
// CHECK-NEXT: %[[R:.+]] = vector.contract {indexing_maps = [#[[$map0]], #[[$map1]], #[[$map2]]],
|
|
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind<add>}
|
|
// CHECK-SAME: %[[ARG0]], %[[ARG1]], %[[ARG2]] : vector<64x64xf16>, vector<64x64xf16> into vector<64x64xf32>
|
|
// CHECK-NEXT: return %[[R]] : vector<64x64xf32>
|
|
func.func @fold_arith_extf_into_contract(%arg0: vector<64x64xf16>, %arg1: vector<64x64xf16>, %arg2: vector<64x64xf32>) -> vector<64x64xf32> {
|
|
%lhs_f32 = arith.extf %arg0 : vector<64x64xf16> to vector<64x64xf32>
|
|
%rhs_f32 = arith.extf %arg1 : vector<64x64xf16> to vector<64x64xf32>
|
|
%result = vector.contract {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind<add>} %lhs_f32, %rhs_f32, %arg2 : vector<64x64xf32>, vector<64x64xf32> into vector<64x64xf32>
|
|
return %result : vector<64x64xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
|
|
%func = transform.structured.match ops{["func.func"]} in %module_op : (!transform.any_op) -> !transform.any_op
|
|
transform.apply_patterns to %func {
|
|
transform.apply_patterns.vector.fold_arith_extension
|
|
} : !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|