1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
148 lines
5.8 KiB
MLIR
148 lines
5.8 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
|
|
|
|
#trait_op = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // a
|
|
affine_map<(i) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "x(i) = OP a(i)"
|
|
}
|
|
|
|
module {
|
|
func.func @sparse_absf(%arg0: tensor<?xf64, #SparseVector>)
|
|
-> tensor<?xf64, #SparseVector> {
|
|
%c0 = arith.constant 0 : index
|
|
%d = tensor.dim %arg0, %c0 : tensor<?xf64, #SparseVector>
|
|
%xin = tensor.empty(%d) : tensor<?xf64, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arg0: tensor<?xf64, #SparseVector>)
|
|
outs(%xin: tensor<?xf64, #SparseVector>) {
|
|
^bb0(%a: f64, %x: f64) :
|
|
%result = math.absf %a : f64
|
|
linalg.yield %result : f64
|
|
} -> tensor<?xf64, #SparseVector>
|
|
return %0 : tensor<?xf64, #SparseVector>
|
|
}
|
|
|
|
func.func @sparse_absi(%arg0: tensor<?xi32, #SparseVector>)
|
|
-> tensor<?xi32, #SparseVector> {
|
|
%c0 = arith.constant 0 : index
|
|
%d = tensor.dim %arg0, %c0 : tensor<?xi32, #SparseVector>
|
|
%xin = tensor.empty(%d) : tensor<?xi32, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arg0: tensor<?xi32, #SparseVector>)
|
|
outs(%xin: tensor<?xi32, #SparseVector>) {
|
|
^bb0(%a: i32, %x: i32) :
|
|
%result = math.absi %a : i32
|
|
linalg.yield %result : i32
|
|
} -> tensor<?xi32, #SparseVector>
|
|
return %0 : tensor<?xi32, #SparseVector>
|
|
}
|
|
|
|
// Driver method to call and verify sign kernel.
|
|
func.func @main() {
|
|
%c0 = arith.constant 0 : index
|
|
%df = arith.constant 99.99 : f64
|
|
%di = arith.constant 9999 : i32
|
|
|
|
%pnan = arith.constant 0x7FF0000001000000 : f64
|
|
%nnan = arith.constant 0xFFF0000001000000 : f64
|
|
%pinf = arith.constant 0x7FF0000000000000 : f64
|
|
%ninf = arith.constant 0xFFF0000000000000 : f64
|
|
|
|
// Setup sparse vectors.
|
|
%v1 = arith.constant sparse<
|
|
[ [0], [3], [5], [11], [13], [17], [18], [20], [21], [28], [29], [31] ],
|
|
[ -1.5, 1.5, -10.2, 11.3, 1.0, -1.0,
|
|
0x7FF0000001000000, // +NaN
|
|
0xFFF0000001000000, // -NaN
|
|
0x7FF0000000000000, // +Inf
|
|
0xFFF0000000000000, // -Inf
|
|
-0.0, // -Zero
|
|
0.0 // +Zero
|
|
]
|
|
> : tensor<32xf64>
|
|
%v2 = arith.constant sparse<
|
|
[ [0], [3], [5], [11], [13], [17], [18], [21], [31] ],
|
|
[ -2147483648, -2147483647, -1000, -1, 0,
|
|
1, 1000, 2147483646, 2147483647
|
|
]
|
|
> : tensor<32xi32>
|
|
%sv1 = sparse_tensor.convert %v1
|
|
: tensor<32xf64> to tensor<?xf64, #SparseVector>
|
|
%sv2 = sparse_tensor.convert %v2
|
|
: tensor<32xi32> to tensor<?xi32, #SparseVector>
|
|
|
|
// Call abs kernels.
|
|
%0 = call @sparse_absf(%sv1) : (tensor<?xf64, #SparseVector>)
|
|
-> tensor<?xf64, #SparseVector>
|
|
|
|
%1 = call @sparse_absi(%sv2) : (tensor<?xi32, #SparseVector>)
|
|
-> tensor<?xi32, #SparseVector>
|
|
|
|
//
|
|
// Verify the results.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 12
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 12 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 20, 21, 28, 29, 31 )
|
|
// CHECK-NEXT: values : ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 9
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 9 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 21, 31 )
|
|
// CHECK-NEXT: values : ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %0 : tensor<?xf64, #SparseVector>
|
|
sparse_tensor.print %1 : tensor<?xi32, #SparseVector>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
|
|
bufferization.dealloc_tensor %sv2 : tensor<?xi32, #SparseVector>
|
|
bufferization.dealloc_tensor %0 : tensor<?xf64, #SparseVector>
|
|
bufferization.dealloc_tensor %1 : tensor<?xi32, #SparseVector>
|
|
return
|
|
}
|
|
}
|