1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
168 lines
6.7 KiB
MLIR
168 lines
6.7 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#DCSR = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
|
|
}>
|
|
|
|
#trait = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)>, // B
|
|
affine_map<(i,j) -> (i,j)> // x (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i, j) = cmp A(i,j) B(i, j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
func.func @cmp_all_dense(%arga: tensor<4x4xf64>,
|
|
%argb: tensor<4x4xf64>,
|
|
%argx: tensor<4x4xi8>) -> tensor<4x4xi8> {
|
|
%0 = linalg.generic #trait
|
|
ins(%arga, %argb: tensor<4x4xf64>, tensor<4x4xf64>)
|
|
outs(%argx: tensor<4x4xi8>) {
|
|
^bb(%a: f64, %b: f64, %x: i8):
|
|
%0 = arith.cmpf ult, %a, %b : f64
|
|
%1 = arith.extui %0 : i1 to i8
|
|
linalg.yield %1 : i8
|
|
} -> tensor<4x4xi8>
|
|
return %0 : tensor<4x4xi8>
|
|
}
|
|
|
|
func.func @cmp_lhs_sparse(%arga: tensor<4x4xf64, #DCSR>,
|
|
%argb: tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> {
|
|
%argx = tensor.empty() : tensor<4x4xi8, #DCSR>
|
|
%0 = linalg.generic #trait
|
|
ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64>)
|
|
outs(%argx: tensor<4x4xi8, #DCSR>) {
|
|
^bb(%a: f64, %b: f64, %x: i8):
|
|
%0 = arith.cmpf ult, %a, %b : f64
|
|
%1 = arith.extui %0 : i1 to i8
|
|
linalg.yield %1 : i8
|
|
} -> tensor<4x4xi8, #DCSR>
|
|
return %0 : tensor<4x4xi8, #DCSR>
|
|
}
|
|
|
|
func.func @cmp_all_sparse(%arga: tensor<4x4xf64, #DCSR>,
|
|
%argb: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> {
|
|
%argx = tensor.empty() : tensor<4x4xi8, #DCSR>
|
|
%0 = linalg.generic #trait
|
|
ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>)
|
|
outs(%argx: tensor<4x4xi8, #DCSR>) {
|
|
^bb(%a: f64, %b: f64, %x: i8):
|
|
%0 = arith.cmpf ult, %a, %b : f64
|
|
%1 = arith.extui %0 : i1 to i8
|
|
linalg.yield %1 : i8
|
|
} -> tensor<4x4xi8, #DCSR>
|
|
return %0 : tensor<4x4xi8, #DCSR>
|
|
}
|
|
|
|
//
|
|
// Main driver that constructs matrix and calls the sparse kernel to perform
|
|
// element-wise comparison.
|
|
//
|
|
func.func @main() {
|
|
%d0 = arith.constant 0 : i8
|
|
%c0 = arith.constant 0 : index
|
|
|
|
%lhs_dn = arith.constant dense<
|
|
[ [ 0.0, 0.0, 1.5, 1.0],
|
|
[ 0.0, 3.5, 0.0, 0.0],
|
|
[ 1.0, 5.0, 2.0, 0.0],
|
|
[ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64>
|
|
|
|
%rhs_dn = arith.constant dense<
|
|
[ [ 0.0, 1.5, 1.0, 1.5],
|
|
[ 3.5, 0.0, 0.0, 0.0],
|
|
[ 5.0, 2.0, 0.0, 2.0],
|
|
[ 0.5, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64>
|
|
|
|
%lhs_sp = sparse_tensor.convert %lhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
|
|
%rhs_sp = sparse_tensor.convert %rhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
|
|
|
|
%output = arith.constant dense<0> : tensor<4x4xi8>
|
|
%all_dn_out = call @cmp_all_dense(%lhs_dn, %rhs_dn, %output)
|
|
: (tensor<4x4xf64>, tensor<4x4xf64>, tensor<4x4xi8>) -> tensor<4x4xi8>
|
|
%lhs_sp_out = call @cmp_lhs_sparse(%lhs_sp, %rhs_dn)
|
|
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR>
|
|
%all_sp_out = call @cmp_all_sparse(%lhs_sp, %rhs_sp)
|
|
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR>
|
|
|
|
//
|
|
// All should have the same boolean values.
|
|
//
|
|
// CHECK: ( ( 0, 1, 0, 1 ), ( 1, 0, 0, 0 ), ( 1, 0, 0, 1 ), ( 0, 0, 0, 0 ) )
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 16
|
|
// CHECK-NEXT: dim = ( 4, 4 )
|
|
// CHECK-NEXT: lvl = ( 4, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
|
|
// CHECK-NEXT: values : ( 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 11
|
|
// CHECK-NEXT: dim = ( 4, 4 )
|
|
// CHECK-NEXT: lvl = ( 4, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 3, 5, 9, 11 )
|
|
// CHECK-NEXT: crd[1] : ( 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1 )
|
|
// CHECK-NEXT: values : ( 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
%v = vector.transfer_read %all_dn_out[%c0, %c0], %d0
|
|
: tensor<4x4xi8>, vector<4x4xi8>
|
|
vector.print %v : vector<4x4xi8>
|
|
sparse_tensor.print %lhs_sp_out : tensor<4x4xi8, #DCSR>
|
|
sparse_tensor.print %all_sp_out : tensor<4x4xi8, #DCSR>
|
|
|
|
bufferization.dealloc_tensor %lhs_sp : tensor<4x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %rhs_sp : tensor<4x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %all_dn_out : tensor<4x4xi8>
|
|
bufferization.dealloc_tensor %lhs_sp_out : tensor<4x4xi8, #DCSR>
|
|
bufferization.dealloc_tensor %all_sp_out : tensor<4x4xi8, #DCSR>
|
|
|
|
return
|
|
}
|
|
}
|