1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
129 lines
5.6 KiB
MLIR
129 lines
5.6 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
|
|
|
|
#trait_op = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // a (in)
|
|
affine_map<(i) -> (i)>, // b (in)
|
|
affine_map<(i) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "x(i) = a(i) OP b(i)"
|
|
}
|
|
|
|
module {
|
|
func.func @cadd(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = tensor.empty(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.add %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
func.func @cmul(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = tensor.empty(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.mul %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
// Driver method to call and verify complex kernels.
|
|
func.func @main() {
|
|
// Setup sparse vectors.
|
|
%v1 = arith.constant sparse<
|
|
[ [0], [28], [31] ],
|
|
[ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f64>>
|
|
%v2 = arith.constant sparse<
|
|
[ [1], [28], [31] ],
|
|
[ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex<f64>>
|
|
%sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
%sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
// Call sparse vector kernels.
|
|
%0 = call @cadd(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
%1 = call @cmul(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
//
|
|
// Verify the results.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 4
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 28, 31 )
|
|
// CHECK-NEXT: values : ( ( 511.13, 2 ), ( 1, 0 ), ( 5, 4 ), ( 8, 6 ) )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 2
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 28, 31 )
|
|
// CHECK-NEXT: values : ( ( 6, 8 ), ( 15, 18 ) )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
sparse_tensor.print %1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %sv2 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
return
|
|
}
|
|
}
|