1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
108 lines
4.1 KiB
MLIR
108 lines
4.1 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
|
|
|
|
module {
|
|
|
|
//
|
|
// Sparse kernel.
|
|
//
|
|
func.func @sparse_dot(%a: tensor<1024xf32, #SparseVector>,
|
|
%b: tensor<1024xf32, #SparseVector>,
|
|
%x: tensor<f32>) -> tensor<f32> {
|
|
%dot = linalg.dot ins(%a, %b: tensor<1024xf32, #SparseVector>,
|
|
tensor<1024xf32, #SparseVector>)
|
|
outs(%x: tensor<f32>) -> tensor<f32>
|
|
return %dot : tensor<f32>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @main() {
|
|
// Setup two sparse vectors.
|
|
%d1 = arith.constant sparse<
|
|
[ [0], [1], [22], [23], [1022] ], [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
> : tensor<1024xf32>
|
|
%d2 = arith.constant sparse<
|
|
[ [22], [1022], [1023] ], [6.0, 7.0, 8.0]
|
|
> : tensor<1024xf32>
|
|
%s1 = sparse_tensor.convert %d1 : tensor<1024xf32> to tensor<1024xf32, #SparseVector>
|
|
%s2 = sparse_tensor.convert %d2 : tensor<1024xf32> to tensor<1024xf32, #SparseVector>
|
|
|
|
//
|
|
// Verify the inputs.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 1024 )
|
|
// CHECK-NEXT: lvl = ( 1024 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 5 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 22, 23, 1022 )
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 3
|
|
// CHECK-NEXT: dim = ( 1024 )
|
|
// CHECK-NEXT: lvl = ( 1024 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 3 )
|
|
// CHECK-NEXT: crd[0] : ( 22, 1022, 1023 )
|
|
// CHECK-NEXT: values : ( 6, 7, 8 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %s1 : tensor<1024xf32, #SparseVector>
|
|
sparse_tensor.print %s2 : tensor<1024xf32, #SparseVector>
|
|
|
|
// Call the kernel and verify the output.
|
|
//
|
|
// CHECK: 53
|
|
//
|
|
%t = tensor.empty() : tensor<f32>
|
|
%z = arith.constant 0.0 : f32
|
|
%x = tensor.insert %z into %t[] : tensor<f32>
|
|
%0 = call @sparse_dot(%s1, %s2, %x) : (tensor<1024xf32, #SparseVector>,
|
|
tensor<1024xf32, #SparseVector>,
|
|
tensor<f32>) -> tensor<f32>
|
|
%1 = tensor.extract %0[] : tensor<f32>
|
|
vector.print %1 : f32
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %0 : tensor<f32>
|
|
bufferization.dealloc_tensor %s1 : tensor<1024xf32, #SparseVector>
|
|
bufferization.dealloc_tensor %s2 : tensor<1024xf32, #SparseVector>
|
|
|
|
return
|
|
}
|
|
}
|