1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
337 lines
13 KiB
MLIR
337 lines
13 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{
|
|
map = (d0) -> (d0 : compressed)
|
|
}>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
|
|
}>
|
|
|
|
#trait_1d = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // a
|
|
affine_map<(i) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "X(i) = a(i) op i"
|
|
}
|
|
|
|
#trait_2d = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(i,j) op i op j"
|
|
}
|
|
|
|
//
|
|
// Test with indices. Note that a lot of results are actually
|
|
// dense, but this is done to stress test all the operations.
|
|
//
|
|
module {
|
|
|
|
//
|
|
// Kernel that uses index in the index notation (conjunction).
|
|
//
|
|
func.func @sparse_index_1d_conj(%arga: tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector> {
|
|
%init = tensor.empty() : tensor<8xi64, #SparseVector>
|
|
%r = linalg.generic #trait_1d
|
|
ins(%arga: tensor<8xi64, #SparseVector>)
|
|
outs(%init: tensor<8xi64, #SparseVector>) {
|
|
^bb(%a: i64, %x: i64):
|
|
%i = linalg.index 0 : index
|
|
%ii = arith.index_cast %i : index to i64
|
|
%m1 = arith.muli %a, %ii : i64
|
|
linalg.yield %m1 : i64
|
|
} -> tensor<8xi64, #SparseVector>
|
|
return %r : tensor<8xi64, #SparseVector>
|
|
}
|
|
|
|
//
|
|
// Kernel that uses index in the index notation (disjunction).
|
|
//
|
|
func.func @sparse_index_1d_disj(%arga: tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector> {
|
|
%init = tensor.empty() : tensor<8xi64, #SparseVector>
|
|
%r = linalg.generic #trait_1d
|
|
ins(%arga: tensor<8xi64, #SparseVector>)
|
|
outs(%init: tensor<8xi64, #SparseVector>) {
|
|
^bb(%a: i64, %x: i64):
|
|
%i = linalg.index 0 : index
|
|
%ii = arith.index_cast %i : index to i64
|
|
%m1 = arith.addi %a, %ii : i64
|
|
linalg.yield %m1 : i64
|
|
} -> tensor<8xi64, #SparseVector>
|
|
return %r : tensor<8xi64, #SparseVector>
|
|
}
|
|
|
|
//
|
|
// Kernel that uses indices in the index notation (conjunction).
|
|
//
|
|
func.func @sparse_index_2d_conj(%arga: tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix> {
|
|
%init = tensor.empty() : tensor<3x4xi64, #SparseMatrix>
|
|
%r = linalg.generic #trait_2d
|
|
ins(%arga: tensor<3x4xi64, #SparseMatrix>)
|
|
outs(%init: tensor<3x4xi64, #SparseMatrix>) {
|
|
^bb(%a: i64, %x: i64):
|
|
%i = linalg.index 0 : index
|
|
%j = linalg.index 1 : index
|
|
%ii = arith.index_cast %i : index to i64
|
|
%jj = arith.index_cast %j : index to i64
|
|
%m1 = arith.muli %ii, %a : i64
|
|
%m2 = arith.muli %jj, %m1 : i64
|
|
linalg.yield %m2 : i64
|
|
} -> tensor<3x4xi64, #SparseMatrix>
|
|
return %r : tensor<3x4xi64, #SparseMatrix>
|
|
}
|
|
|
|
//
|
|
// Kernel that uses indices in the index notation (disjunction).
|
|
//
|
|
func.func @sparse_index_2d_disj(%arga: tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix> {
|
|
%init = tensor.empty() : tensor<3x4xi64, #SparseMatrix>
|
|
%r = linalg.generic #trait_2d
|
|
ins(%arga: tensor<3x4xi64, #SparseMatrix>)
|
|
outs(%init: tensor<3x4xi64, #SparseMatrix>) {
|
|
^bb(%a: i64, %x: i64):
|
|
%i = linalg.index 0 : index
|
|
%j = linalg.index 1 : index
|
|
%ii = arith.index_cast %i : index to i64
|
|
%jj = arith.index_cast %j : index to i64
|
|
%m1 = arith.addi %ii, %a : i64
|
|
%m2 = arith.addi %jj, %m1 : i64
|
|
linalg.yield %m2 : i64
|
|
} -> tensor<3x4xi64, #SparseMatrix>
|
|
return %r : tensor<3x4xi64, #SparseMatrix>
|
|
}
|
|
|
|
func.func @add_outer_2d(%arg0: tensor<2x3xf32, #SparseMatrix>)
|
|
-> tensor<2x3xf32, #SparseMatrix> {
|
|
%0 = tensor.empty() : tensor<2x3xf32, #SparseMatrix>
|
|
%1 = linalg.generic #trait_2d
|
|
ins(%arg0 : tensor<2x3xf32, #SparseMatrix>)
|
|
outs(%0 : tensor<2x3xf32, #SparseMatrix>) {
|
|
^bb0(%arg1: f32, %arg2: f32):
|
|
%2 = linalg.index 0 : index
|
|
%3 = arith.index_cast %2 : index to i64
|
|
%4 = arith.uitofp %3 : i64 to f32
|
|
%5 = arith.addf %arg1, %4 : f32
|
|
linalg.yield %5 : f32
|
|
} -> tensor<2x3xf32, #SparseMatrix>
|
|
return %1 : tensor<2x3xf32, #SparseMatrix>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @main() {
|
|
%c0 = arith.constant 0 : index
|
|
%du = arith.constant -1 : i64
|
|
%df = arith.constant -1.0 : f32
|
|
|
|
// Setup input sparse vector.
|
|
%v1 = arith.constant sparse<[[2], [4]], [ 10, 20]> : tensor<8xi64>
|
|
%sv = sparse_tensor.convert %v1 : tensor<8xi64> to tensor<8xi64, #SparseVector>
|
|
|
|
// Setup input "sparse" vector.
|
|
%v2 = arith.constant dense<[ 1, 2, 4, 8, 16, 32, 64, 128 ]> : tensor<8xi64>
|
|
%dv = sparse_tensor.convert %v2 : tensor<8xi64> to tensor<8xi64, #SparseVector>
|
|
|
|
// Setup input sparse matrix.
|
|
%m1 = arith.constant sparse<[[1,1], [2,3]], [10, 20]> : tensor<3x4xi64>
|
|
%sm = sparse_tensor.convert %m1 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix>
|
|
|
|
// Setup input "sparse" matrix.
|
|
%m2 = arith.constant dense <[ [ 1, 1, 1, 1 ],
|
|
[ 1, 2, 1, 1 ],
|
|
[ 1, 1, 3, 4 ] ]> : tensor<3x4xi64>
|
|
%dm = sparse_tensor.convert %m2 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix>
|
|
|
|
// Setup input sparse f32 matrix.
|
|
%mf32 = arith.constant sparse<[[0,1], [1,2]], [10.0, 41.0]> : tensor<2x3xf32>
|
|
%sf32 = sparse_tensor.convert %mf32 : tensor<2x3xf32> to tensor<2x3xf32, #SparseMatrix>
|
|
|
|
// Call the kernels.
|
|
%0 = call @sparse_index_1d_conj(%sv) : (tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector>
|
|
%1 = call @sparse_index_1d_disj(%sv) : (tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector>
|
|
%2 = call @sparse_index_1d_conj(%dv) : (tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector>
|
|
%3 = call @sparse_index_1d_disj(%dv) : (tensor<8xi64, #SparseVector>)
|
|
-> tensor<8xi64, #SparseVector>
|
|
%4 = call @sparse_index_2d_conj(%sm) : (tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix>
|
|
%5 = call @sparse_index_2d_disj(%sm) : (tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix>
|
|
%6 = call @sparse_index_2d_conj(%dm) : (tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix>
|
|
%7 = call @sparse_index_2d_disj(%dm) : (tensor<3x4xi64, #SparseMatrix>)
|
|
-> tensor<3x4xi64, #SparseMatrix>
|
|
|
|
//
|
|
// Verify result.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 2
|
|
// CHECK-NEXT: dim = ( 8 )
|
|
// CHECK-NEXT: lvl = ( 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 2, 4 )
|
|
// CHECK-NEXT: values : ( 20, 80 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 8
|
|
// CHECK-NEXT: dim = ( 8 )
|
|
// CHECK-NEXT: lvl = ( 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 8 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
|
|
// CHECK-NEXT: values : ( 0, 1, 12, 3, 24, 5, 6, 7 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 8
|
|
// CHECK-NEXT: dim = ( 8 )
|
|
// CHECK-NEXT: lvl = ( 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 8 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
|
|
// CHECK-NEXT: values : ( 0, 2, 8, 24, 64, 160, 384, 896 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 8
|
|
// CHECK-NEXT: dim = ( 8 )
|
|
// CHECK-NEXT: lvl = ( 8 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 8 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
|
|
// CHECK-NEXT: values : ( 1, 3, 6, 11, 20, 37, 70, 135 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 2
|
|
// CHECK-NEXT: dim = ( 3, 4 )
|
|
// CHECK-NEXT: lvl = ( 3, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 1, 2 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 2 )
|
|
// CHECK-NEXT: crd[1] : ( 1, 3 )
|
|
// CHECK-NEXT: values : ( 10, 120 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 12
|
|
// CHECK-NEXT: dim = ( 3, 4 )
|
|
// CHECK-NEXT: lvl = ( 3, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 3 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
|
|
// CHECK-NEXT: values : ( 0, 1, 2, 3, 1, 12, 3, 4, 2, 3, 4, 25 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 12
|
|
// CHECK-NEXT: dim = ( 3, 4 )
|
|
// CHECK-NEXT: lvl = ( 3, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 3 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
|
|
// CHECK-NEXT: values : ( 0, 0, 0, 0, 0, 2, 2, 3, 0, 2, 12, 24 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 12
|
|
// CHECK-NEXT: dim = ( 3, 4 )
|
|
// CHECK-NEXT: lvl = ( 3, 4 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 3 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 2, 4, 4, 5, 3, 4, 7, 9 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %0 : tensor<8xi64, #SparseVector>
|
|
sparse_tensor.print %1 : tensor<8xi64, #SparseVector>
|
|
sparse_tensor.print %2 : tensor<8xi64, #SparseVector>
|
|
sparse_tensor.print %3 : tensor<8xi64, #SparseVector>
|
|
sparse_tensor.print %4 : tensor<3x4xi64, #SparseMatrix>
|
|
sparse_tensor.print %5 : tensor<3x4xi64, #SparseMatrix>
|
|
sparse_tensor.print %6 : tensor<3x4xi64, #SparseMatrix>
|
|
sparse_tensor.print %7 : tensor<3x4xi64, #SparseMatrix>
|
|
|
|
//
|
|
// Call the f32 kernel, verify the result.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 2, 3 )
|
|
// CHECK-NEXT: lvl = ( 2, 3 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 3, 6 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 0, 1, 2 )
|
|
// CHECK-NEXT: values : ( 0, 10, 0, 1, 1, 42 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
%100 = call @add_outer_2d(%sf32) : (tensor<2x3xf32, #SparseMatrix>)
|
|
-> tensor<2x3xf32, #SparseMatrix>
|
|
sparse_tensor.print %100 : tensor<2x3xf32, #SparseMatrix>
|
|
|
|
// Release resources.
|
|
bufferization.dealloc_tensor %sv : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %dv : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %0 : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %1 : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %2 : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %3 : tensor<8xi64, #SparseVector>
|
|
bufferization.dealloc_tensor %sm : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %dm : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %4 : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %5 : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %6 : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %7 : tensor<3x4xi64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %sf32 : tensor<2x3xf32, #SparseMatrix>
|
|
bufferization.dealloc_tensor %100 : tensor<2x3xf32, #SparseMatrix>
|
|
|
|
return
|
|
}
|
|
}
|