1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
169 lines
6.4 KiB
MLIR
169 lines
6.4 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=4 enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
|
|
#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
|
|
#CSC = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : dense, d0 : compressed)
|
|
}>
|
|
|
|
//
|
|
// Traits for tensor operations.
|
|
//
|
|
#trait_vec_select = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // A
|
|
affine_map<(i) -> (i)> // C (out)
|
|
],
|
|
iterator_types = ["parallel"]
|
|
}
|
|
|
|
#trait_mat_select = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A (in)
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"]
|
|
}
|
|
|
|
module {
|
|
func.func @vecSelect(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
|
|
%c0 = arith.constant 0 : index
|
|
%cf1 = arith.constant 1.0 : f64
|
|
%d0 = tensor.dim %arga, %c0 : tensor<?xf64, #SparseVector>
|
|
%xv = tensor.empty(%d0): tensor<?xf64, #SparseVector>
|
|
%0 = linalg.generic #trait_vec_select
|
|
ins(%arga: tensor<?xf64, #SparseVector>)
|
|
outs(%xv: tensor<?xf64, #SparseVector>) {
|
|
^bb(%a: f64, %b: f64):
|
|
%1 = sparse_tensor.select %a : f64 {
|
|
^bb0(%x: f64):
|
|
%keep = arith.cmpf "oge", %x, %cf1 : f64
|
|
sparse_tensor.yield %keep : i1
|
|
}
|
|
linalg.yield %1 : f64
|
|
} -> tensor<?xf64, #SparseVector>
|
|
return %0 : tensor<?xf64, #SparseVector>
|
|
}
|
|
|
|
func.func @matUpperTriangle(%arga: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
|
|
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #CSR>
|
|
%xv = tensor.empty(%d0, %d1): tensor<?x?xf64, #CSR>
|
|
%0 = linalg.generic #trait_mat_select
|
|
ins(%arga: tensor<?x?xf64, #CSR>)
|
|
outs(%xv: tensor<?x?xf64, #CSR>) {
|
|
^bb(%a: f64, %b: f64):
|
|
%row = linalg.index 0 : index
|
|
%col = linalg.index 1 : index
|
|
%1 = sparse_tensor.select %a : f64 {
|
|
^bb0(%x: f64):
|
|
%keep = arith.cmpi "ugt", %col, %row : index
|
|
sparse_tensor.yield %keep : i1
|
|
}
|
|
linalg.yield %1 : f64
|
|
} -> tensor<?x?xf64, #CSR>
|
|
return %0 : tensor<?x?xf64, #CSR>
|
|
}
|
|
|
|
// Driver method to call and verify vector kernels.
|
|
func.func @main() {
|
|
%c0 = arith.constant 0 : index
|
|
|
|
// Setup sparse matrices.
|
|
%v1 = arith.constant sparse<
|
|
[ [1], [3], [5], [7], [9] ],
|
|
[ 1.0, 2.0, -4.0, 0.0, 5.0 ]
|
|
> : tensor<10xf64>
|
|
%m1 = arith.constant sparse<
|
|
[ [0, 3], [1, 4], [2, 1], [2, 3], [3, 3], [3, 4], [4, 2] ],
|
|
[ 1., 2., 3., 4., 5., 6., 7.]
|
|
> : tensor<5x5xf64>
|
|
%sv1 = sparse_tensor.convert %v1 : tensor<10xf64> to tensor<?xf64, #SparseVector>
|
|
%sm1 = sparse_tensor.convert %m1 : tensor<5x5xf64> to tensor<?x?xf64, #CSR>
|
|
|
|
// Call sparse matrix kernels.
|
|
%1 = call @vecSelect(%sv1) : (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
|
|
%2 = call @matUpperTriangle(%sm1) : (tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>
|
|
|
|
//
|
|
// Verify the results.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 5
|
|
// CHECK-NEXT: dim = ( 10 )
|
|
// CHECK-NEXT: lvl = ( 10 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 5 )
|
|
// CHECK-NEXT: crd[0] : ( 1, 3, 5, 7, 9 )
|
|
// CHECK-NEXT: values : ( 1, 2, -4, 0, 5 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 7
|
|
// CHECK-NEXT: dim = ( 5, 5 )
|
|
// CHECK-NEXT: lvl = ( 5, 5 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 4, 6, 7 )
|
|
// CHECK-NEXT: crd[1] : ( 3, 4, 1, 3, 3, 4, 2 )
|
|
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 3
|
|
// CHECK-NEXT: dim = ( 10 )
|
|
// CHECK-NEXT: lvl = ( 10 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 3 )
|
|
// CHECK-NEXT: crd[0] : ( 1, 3, 9 )
|
|
// CHECK-NEXT: values : ( 1, 2, 5 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 4
|
|
// CHECK-NEXT: dim = ( 5, 5 )
|
|
// CHECK-NEXT: lvl = ( 5, 5 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4 )
|
|
// CHECK-NEXT: crd[1] : ( 3, 4, 3, 4 )
|
|
// CHECK-NEXT: values : ( 1, 2, 4, 6 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %sv1 : tensor<?xf64, #SparseVector>
|
|
sparse_tensor.print %sm1 : tensor<?x?xf64, #CSR>
|
|
sparse_tensor.print %1 : tensor<?xf64, #SparseVector>
|
|
sparse_tensor.print %2 : tensor<?x?xf64, #CSR>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
|
|
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
|
|
bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
|
|
bufferization.dealloc_tensor %2 : tensor<?x?xf64, #CSR>
|
|
return
|
|
}
|
|
}
|