1. Remove the trailing comma for the last element of memref and add closing parenthesis. 2. Change integration tests to use the new format.
150 lines
5.3 KiB
MLIR
150 lines
5.3 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#DCSR = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
|
|
}>
|
|
|
|
#DCSC = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : compressed, d0 : compressed)
|
|
}>
|
|
|
|
#transpose_trait = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (j,i)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(j,i)"
|
|
}
|
|
|
|
module {
|
|
|
|
//
|
|
// Transposing a sparse row-wise matrix into another sparse row-wise
|
|
// matrix introduces a cycle in the iteration graph. This complication
|
|
// can be avoided by manually inserting a conversion of the incoming
|
|
// matrix into a sparse column-wise matrix first.
|
|
//
|
|
func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>)
|
|
-> tensor<4x3xf64, #DCSR> {
|
|
%t = sparse_tensor.convert %arga
|
|
: tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC>
|
|
|
|
%i = tensor.empty() : tensor<4x3xf64, #DCSR>
|
|
%0 = linalg.generic #transpose_trait
|
|
ins(%t: tensor<3x4xf64, #DCSC>)
|
|
outs(%i: tensor<4x3xf64, #DCSR>) {
|
|
^bb(%a: f64, %x: f64):
|
|
linalg.yield %a : f64
|
|
} -> tensor<4x3xf64, #DCSR>
|
|
|
|
bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC>
|
|
|
|
return %0 : tensor<4x3xf64, #DCSR>
|
|
}
|
|
|
|
//
|
|
// However, even better, the sparsifier is able to insert such a
|
|
// conversion automatically to resolve a cycle in the iteration graph!
|
|
//
|
|
func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>)
|
|
-> tensor<4x3xf64, #DCSR> {
|
|
%i = tensor.empty() : tensor<4x3xf64, #DCSR>
|
|
%0 = linalg.generic #transpose_trait
|
|
ins(%arga: tensor<3x4xf64, #DCSR>)
|
|
outs(%i: tensor<4x3xf64, #DCSR>) {
|
|
^bb(%a: f64, %x: f64):
|
|
linalg.yield %a : f64
|
|
} -> tensor<4x3xf64, #DCSR>
|
|
return %0 : tensor<4x3xf64, #DCSR>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @main() {
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c4 = arith.constant 4 : index
|
|
%du = arith.constant 0.0 : f64
|
|
|
|
// Setup input sparse matrix from compressed constant.
|
|
%d = arith.constant dense <[
|
|
[ 1.1, 1.2, 0.0, 1.4 ],
|
|
[ 0.0, 0.0, 0.0, 0.0 ],
|
|
[ 3.1, 0.0, 3.3, 3.4 ]
|
|
]> : tensor<3x4xf64>
|
|
%a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>
|
|
|
|
// Call the kernels.
|
|
%0 = call @sparse_transpose(%a)
|
|
: (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
|
|
%1 = call @sparse_transpose_auto(%a)
|
|
: (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
|
|
|
|
//
|
|
// Verify result.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 4, 3 )
|
|
// CHECK-NEXT: lvl = ( 4, 3 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
|
|
// CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 4, 3 )
|
|
// CHECK-NEXT: lvl = ( 4, 3 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
|
|
// CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %0 : tensor<4x3xf64, #DCSR>
|
|
sparse_tensor.print %1 : tensor<4x3xf64, #DCSR>
|
|
|
|
// Release resources.
|
|
bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR>
|
|
bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR>
|
|
|
|
return
|
|
}
|
|
}
|