Files
clang-p2996/mlir/lib/Analysis/AffineAnalysis.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

888 lines
38 KiB
C++

//===- AffineAnalysis.cpp - Affine structures analysis routines -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for affine structures
// (expressions, maps, sets), and other utilities relying on such analysis.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-analysis"
using namespace mlir;
using llvm::dbgs;
/// Returns the sequence of AffineApplyOp Operations operation in
/// 'affineApplyOps', which are reachable via a search starting from 'operands',
/// and ending at operands which are not defined by AffineApplyOps.
// TODO(andydavis) Add a method to AffineApplyOp which forward substitutes
// the AffineApplyOp into any user AffineApplyOps.
void mlir::getReachableAffineApplyOps(
ArrayRef<Value> operands, SmallVectorImpl<Operation *> &affineApplyOps) {
struct State {
// The ssa value for this node in the DFS traversal.
Value value;
// The operand index of 'value' to explore next during DFS traversal.
unsigned operandIndex;
};
SmallVector<State, 4> worklist;
for (auto operand : operands) {
worklist.push_back({operand, 0});
}
while (!worklist.empty()) {
State &state = worklist.back();
auto *opInst = state.value.getDefiningOp();
// Note: getDefiningOp will return nullptr if the operand is not an
// Operation (i.e. block argument), which is a terminator for the search.
if (!isa_and_nonnull<AffineApplyOp>(opInst)) {
worklist.pop_back();
continue;
}
if (state.operandIndex == 0) {
// Pre-Visit: Add 'opInst' to reachable sequence.
affineApplyOps.push_back(opInst);
}
if (state.operandIndex < opInst->getNumOperands()) {
// Visit: Add next 'affineApplyOp' operand to worklist.
// Get next operand to visit at 'operandIndex'.
auto nextOperand = opInst->getOperand(state.operandIndex);
// Increment 'operandIndex' in 'state'.
++state.operandIndex;
// Add 'nextOperand' to worklist.
worklist.push_back({nextOperand, 0});
} else {
// Post-visit: done visiting operands AffineApplyOp, pop off stack.
worklist.pop_back();
}
}
}
// Builds a system of constraints with dimensional identifiers corresponding to
// the loop IVs of the forOps appearing in that order. Any symbols founds in
// the bound operands are added as symbols in the system. Returns failure for
// the yet unimplemented cases.
// TODO(andydavis,bondhugula) Handle non-unit steps through local variables or
// stride information in FlatAffineConstraints. (For eg., by using iv - lb %
// step = 0 and/or by introducing a method in FlatAffineConstraints
// setExprStride(ArrayRef<int64_t> expr, int64_t stride)
LogicalResult mlir::getIndexSet(MutableArrayRef<AffineForOp> forOps,
FlatAffineConstraints *domain) {
SmallVector<Value, 4> indices;
extractForInductionVars(forOps, &indices);
// Reset while associated Values in 'indices' to the domain.
domain->reset(forOps.size(), /*numSymbols=*/0, /*numLocals=*/0, indices);
for (auto forOp : forOps) {
// Add constraints from forOp's bounds.
if (failed(domain->addAffineForOpDomain(forOp)))
return failure();
}
return success();
}
// Computes the iteration domain for 'opInst' and populates 'indexSet', which
// encapsulates the constraints involving loops surrounding 'opInst' and
// potentially involving any Function symbols. The dimensional identifiers in
// 'indexSet' correspond to the loops surrounding 'op' from outermost to
// innermost.
// TODO(andydavis) Add support to handle IfInsts surrounding 'op'.
static LogicalResult getInstIndexSet(Operation *op,
FlatAffineConstraints *indexSet) {
// TODO(andydavis) Extend this to gather enclosing IfInsts and consider
// factoring it out into a utility function.
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*op, &loops);
return getIndexSet(loops, indexSet);
}
namespace {
// ValuePositionMap manages the mapping from Values which represent dimension
// and symbol identifiers from 'src' and 'dst' access functions to positions
// in new space where some Values are kept separate (using addSrc/DstValue)
// and some Values are merged (addSymbolValue).
// Position lookups return the absolute position in the new space which
// has the following format:
//
// [src-dim-identifiers] [dst-dim-identifiers] [symbol-identifiers]
//
// Note: access function non-IV dimension identifiers (that have 'dimension'
// positions in the access function position space) are assigned as symbols
// in the output position space. Convenience access functions which lookup
// an Value in multiple maps are provided (i.e. getSrcDimOrSymPos) to handle
// the common case of resolving positions for all access function operands.
//
// TODO(andydavis) Generalize this: could take a template parameter for
// the number of maps (3 in the current case), and lookups could take indices
// of maps to check. So getSrcDimOrSymPos would be "getPos(value, {0, 2})".
class ValuePositionMap {
public:
void addSrcValue(Value value) {
if (addValueAt(value, &srcDimPosMap, numSrcDims))
++numSrcDims;
}
void addDstValue(Value value) {
if (addValueAt(value, &dstDimPosMap, numDstDims))
++numDstDims;
}
void addSymbolValue(Value value) {
if (addValueAt(value, &symbolPosMap, numSymbols))
++numSymbols;
}
unsigned getSrcDimOrSymPos(Value value) const {
return getDimOrSymPos(value, srcDimPosMap, 0);
}
unsigned getDstDimOrSymPos(Value value) const {
return getDimOrSymPos(value, dstDimPosMap, numSrcDims);
}
unsigned getSymPos(Value value) const {
auto it = symbolPosMap.find(value);
assert(it != symbolPosMap.end());
return numSrcDims + numDstDims + it->second;
}
unsigned getNumSrcDims() const { return numSrcDims; }
unsigned getNumDstDims() const { return numDstDims; }
unsigned getNumDims() const { return numSrcDims + numDstDims; }
unsigned getNumSymbols() const { return numSymbols; }
private:
bool addValueAt(Value value, DenseMap<Value, unsigned> *posMap,
unsigned position) {
auto it = posMap->find(value);
if (it == posMap->end()) {
(*posMap)[value] = position;
return true;
}
return false;
}
unsigned getDimOrSymPos(Value value,
const DenseMap<Value, unsigned> &dimPosMap,
unsigned dimPosOffset) const {
auto it = dimPosMap.find(value);
if (it != dimPosMap.end()) {
return dimPosOffset + it->second;
}
it = symbolPosMap.find(value);
assert(it != symbolPosMap.end());
return numSrcDims + numDstDims + it->second;
}
unsigned numSrcDims = 0;
unsigned numDstDims = 0;
unsigned numSymbols = 0;
DenseMap<Value, unsigned> srcDimPosMap;
DenseMap<Value, unsigned> dstDimPosMap;
DenseMap<Value, unsigned> symbolPosMap;
};
} // namespace
// Builds a map from Value to identifier position in a new merged identifier
// list, which is the result of merging dim/symbol lists from src/dst
// iteration domains, the format of which is as follows:
//
// [src-dim-identifiers, dst-dim-identifiers, symbol-identifiers, const_term]
//
// This method populates 'valuePosMap' with mappings from operand Values in
// 'srcAccessMap'/'dstAccessMap' (as well as those in 'srcDomain'/'dstDomain')
// to the position of these values in the merged list.
static void buildDimAndSymbolPositionMaps(
const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain, const AffineValueMap &srcAccessMap,
const AffineValueMap &dstAccessMap, ValuePositionMap *valuePosMap,
FlatAffineConstraints *dependenceConstraints) {
auto updateValuePosMap = [&](ArrayRef<Value> values, bool isSrc) {
for (unsigned i = 0, e = values.size(); i < e; ++i) {
auto value = values[i];
if (!isForInductionVar(values[i])) {
assert(isValidSymbol(values[i]) &&
"access operand has to be either a loop IV or a symbol");
valuePosMap->addSymbolValue(value);
} else if (isSrc) {
valuePosMap->addSrcValue(value);
} else {
valuePosMap->addDstValue(value);
}
}
};
SmallVector<Value, 4> srcValues, destValues;
srcDomain.getIdValues(0, srcDomain.getNumDimAndSymbolIds(), &srcValues);
dstDomain.getIdValues(0, dstDomain.getNumDimAndSymbolIds(), &destValues);
// Update value position map with identifiers from src iteration domain.
updateValuePosMap(srcValues, /*isSrc=*/true);
// Update value position map with identifiers from dst iteration domain.
updateValuePosMap(destValues, /*isSrc=*/false);
// Update value position map with identifiers from src access function.
updateValuePosMap(srcAccessMap.getOperands(), /*isSrc=*/true);
// Update value position map with identifiers from dst access function.
updateValuePosMap(dstAccessMap.getOperands(), /*isSrc=*/false);
}
// Sets up dependence constraints columns appropriately, in the format:
// [src-dim-ids, dst-dim-ids, symbol-ids, local-ids, const_term]
static void initDependenceConstraints(
const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain, const AffineValueMap &srcAccessMap,
const AffineValueMap &dstAccessMap, const ValuePositionMap &valuePosMap,
FlatAffineConstraints *dependenceConstraints) {
// Calculate number of equalities/inequalities and columns required to
// initialize FlatAffineConstraints for 'dependenceDomain'.
unsigned numIneq =
srcDomain.getNumInequalities() + dstDomain.getNumInequalities();
AffineMap srcMap = srcAccessMap.getAffineMap();
assert(srcMap.getNumResults() == dstAccessMap.getAffineMap().getNumResults());
unsigned numEq = srcMap.getNumResults();
unsigned numDims = srcDomain.getNumDimIds() + dstDomain.getNumDimIds();
unsigned numSymbols = valuePosMap.getNumSymbols();
unsigned numLocals = srcDomain.getNumLocalIds() + dstDomain.getNumLocalIds();
unsigned numIds = numDims + numSymbols + numLocals;
unsigned numCols = numIds + 1;
// Set flat affine constraints sizes and reserving space for constraints.
dependenceConstraints->reset(numIneq, numEq, numCols, numDims, numSymbols,
numLocals);
// Set values corresponding to dependence constraint identifiers.
SmallVector<Value, 4> srcLoopIVs, dstLoopIVs;
srcDomain.getIdValues(0, srcDomain.getNumDimIds(), &srcLoopIVs);
dstDomain.getIdValues(0, dstDomain.getNumDimIds(), &dstLoopIVs);
dependenceConstraints->setIdValues(0, srcLoopIVs.size(), srcLoopIVs);
dependenceConstraints->setIdValues(
srcLoopIVs.size(), srcLoopIVs.size() + dstLoopIVs.size(), dstLoopIVs);
// Set values for the symbolic identifier dimensions.
auto setSymbolIds = [&](ArrayRef<Value> values) {
for (auto value : values) {
if (!isForInductionVar(value)) {
assert(isValidSymbol(value) && "expected symbol");
dependenceConstraints->setIdValue(valuePosMap.getSymPos(value), value);
}
}
};
setSymbolIds(srcAccessMap.getOperands());
setSymbolIds(dstAccessMap.getOperands());
SmallVector<Value, 8> srcSymbolValues, dstSymbolValues;
srcDomain.getIdValues(srcDomain.getNumDimIds(),
srcDomain.getNumDimAndSymbolIds(), &srcSymbolValues);
dstDomain.getIdValues(dstDomain.getNumDimIds(),
dstDomain.getNumDimAndSymbolIds(), &dstSymbolValues);
setSymbolIds(srcSymbolValues);
setSymbolIds(dstSymbolValues);
for (unsigned i = 0, e = dependenceConstraints->getNumDimAndSymbolIds();
i < e; i++)
assert(dependenceConstraints->getIds()[i].hasValue());
}
// Adds iteration domain constraints from 'srcDomain' and 'dstDomain' into
// 'dependenceDomain'.
// Uses 'valuePosMap' to determine the position in 'dependenceDomain' to which a
// srcDomain/dstDomain Value maps.
static void addDomainConstraints(const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain,
const ValuePositionMap &valuePosMap,
FlatAffineConstraints *dependenceDomain) {
unsigned depNumDimsAndSymbolIds = dependenceDomain->getNumDimAndSymbolIds();
SmallVector<int64_t, 4> cst(dependenceDomain->getNumCols());
auto addDomain = [&](bool isSrc, bool isEq, unsigned localOffset) {
const FlatAffineConstraints &domain = isSrc ? srcDomain : dstDomain;
unsigned numCsts =
isEq ? domain.getNumEqualities() : domain.getNumInequalities();
unsigned numDimAndSymbolIds = domain.getNumDimAndSymbolIds();
auto at = [&](unsigned i, unsigned j) -> int64_t {
return isEq ? domain.atEq(i, j) : domain.atIneq(i, j);
};
auto map = [&](unsigned i) -> int64_t {
return isSrc ? valuePosMap.getSrcDimOrSymPos(domain.getIdValue(i))
: valuePosMap.getDstDimOrSymPos(domain.getIdValue(i));
};
for (unsigned i = 0; i < numCsts; ++i) {
// Zero fill.
std::fill(cst.begin(), cst.end(), 0);
// Set coefficients for identifiers corresponding to domain.
for (unsigned j = 0; j < numDimAndSymbolIds; ++j)
cst[map(j)] = at(i, j);
// Local terms.
for (unsigned j = 0, e = domain.getNumLocalIds(); j < e; j++)
cst[depNumDimsAndSymbolIds + localOffset + j] =
at(i, numDimAndSymbolIds + j);
// Set constant term.
cst[cst.size() - 1] = at(i, domain.getNumCols() - 1);
// Add constraint.
if (isEq)
dependenceDomain->addEquality(cst);
else
dependenceDomain->addInequality(cst);
}
};
// Add equalities from src domain.
addDomain(/*isSrc=*/true, /*isEq=*/true, /*localOffset=*/0);
// Add inequalities from src domain.
addDomain(/*isSrc=*/true, /*isEq=*/false, /*localOffset=*/0);
// Add equalities from dst domain.
addDomain(/*isSrc=*/false, /*isEq=*/true,
/*localOffset=*/srcDomain.getNumLocalIds());
// Add inequalities from dst domain.
addDomain(/*isSrc=*/false, /*isEq=*/false,
/*localOffset=*/srcDomain.getNumLocalIds());
}
// Adds equality constraints that equate src and dst access functions
// represented by 'srcAccessMap' and 'dstAccessMap' for each result.
// Requires that 'srcAccessMap' and 'dstAccessMap' have the same results count.
// For example, given the following two accesses functions to a 2D memref:
//
// Source access function:
// (a0 * d0 + a1 * s0 + a2, b0 * d0 + b1 * s0 + b2)
//
// Destination access function:
// (c0 * d0 + c1 * s0 + c2, f0 * d0 + f1 * s0 + f2)
//
// This method constructs the following equality constraints in
// 'dependenceDomain', by equating the access functions for each result
// (i.e. each memref dim). Notice that 'd0' for the destination access function
// is mapped into 'd0' in the equality constraint:
//
// d0 d1 s0 c
// -- -- -- --
// a0 -c0 (a1 - c1) (a1 - c2) = 0
// b0 -f0 (b1 - f1) (b1 - f2) = 0
//
// Returns failure if any AffineExpr cannot be flattened (due to it being
// semi-affine). Returns success otherwise.
static LogicalResult
addMemRefAccessConstraints(const AffineValueMap &srcAccessMap,
const AffineValueMap &dstAccessMap,
const ValuePositionMap &valuePosMap,
FlatAffineConstraints *dependenceDomain) {
AffineMap srcMap = srcAccessMap.getAffineMap();
AffineMap dstMap = dstAccessMap.getAffineMap();
assert(srcMap.getNumResults() == dstMap.getNumResults());
unsigned numResults = srcMap.getNumResults();
unsigned srcNumIds = srcMap.getNumDims() + srcMap.getNumSymbols();
ArrayRef<Value> srcOperands = srcAccessMap.getOperands();
unsigned dstNumIds = dstMap.getNumDims() + dstMap.getNumSymbols();
ArrayRef<Value> dstOperands = dstAccessMap.getOperands();
std::vector<SmallVector<int64_t, 8>> srcFlatExprs;
std::vector<SmallVector<int64_t, 8>> destFlatExprs;
FlatAffineConstraints srcLocalVarCst, destLocalVarCst;
// Get flattened expressions for the source destination maps.
if (failed(getFlattenedAffineExprs(srcMap, &srcFlatExprs, &srcLocalVarCst)) ||
failed(getFlattenedAffineExprs(dstMap, &destFlatExprs, &destLocalVarCst)))
return failure();
unsigned domNumLocalIds = dependenceDomain->getNumLocalIds();
unsigned srcNumLocalIds = srcLocalVarCst.getNumLocalIds();
unsigned dstNumLocalIds = destLocalVarCst.getNumLocalIds();
unsigned numLocalIdsToAdd = srcNumLocalIds + dstNumLocalIds;
for (unsigned i = 0; i < numLocalIdsToAdd; i++) {
dependenceDomain->addLocalId(dependenceDomain->getNumLocalIds());
}
unsigned numDims = dependenceDomain->getNumDimIds();
unsigned numSymbols = dependenceDomain->getNumSymbolIds();
unsigned numSrcLocalIds = srcLocalVarCst.getNumLocalIds();
unsigned newLocalIdOffset = numDims + numSymbols + domNumLocalIds;
// Equality to add.
SmallVector<int64_t, 8> eq(dependenceDomain->getNumCols());
for (unsigned i = 0; i < numResults; ++i) {
// Zero fill.
std::fill(eq.begin(), eq.end(), 0);
// Flattened AffineExpr for src result 'i'.
const auto &srcFlatExpr = srcFlatExprs[i];
// Set identifier coefficients from src access function.
for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
eq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] = srcFlatExpr[j];
// Local terms.
for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
eq[newLocalIdOffset + j] = srcFlatExpr[srcNumIds + j];
// Set constant term.
eq[eq.size() - 1] = srcFlatExpr[srcFlatExpr.size() - 1];
// Flattened AffineExpr for dest result 'i'.
const auto &destFlatExpr = destFlatExprs[i];
// Set identifier coefficients from dst access function.
for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
eq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] -= destFlatExpr[j];
// Local terms.
for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
eq[newLocalIdOffset + numSrcLocalIds + j] = -destFlatExpr[dstNumIds + j];
// Set constant term.
eq[eq.size() - 1] -= destFlatExpr[destFlatExpr.size() - 1];
// Add equality constraint.
dependenceDomain->addEquality(eq);
}
// Add equality constraints for any operands that are defined by constant ops.
auto addEqForConstOperands = [&](ArrayRef<Value> operands) {
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
if (isForInductionVar(operands[i]))
continue;
auto symbol = operands[i];
assert(isValidSymbol(symbol));
// Check if the symbol is a constant.
if (auto cOp = dyn_cast_or_null<ConstantIndexOp>(symbol.getDefiningOp()))
dependenceDomain->setIdToConstant(valuePosMap.getSymPos(symbol),
cOp.getValue());
}
};
// Add equality constraints for any src symbols defined by constant ops.
addEqForConstOperands(srcOperands);
// Add equality constraints for any dst symbols defined by constant ops.
addEqForConstOperands(dstOperands);
// By construction (see flattener), local var constraints will not have any
// equalities.
assert(srcLocalVarCst.getNumEqualities() == 0 &&
destLocalVarCst.getNumEqualities() == 0);
// Add inequalities from srcLocalVarCst and destLocalVarCst into the
// dependence domain.
SmallVector<int64_t, 8> ineq(dependenceDomain->getNumCols());
for (unsigned r = 0, e = srcLocalVarCst.getNumInequalities(); r < e; r++) {
std::fill(ineq.begin(), ineq.end(), 0);
// Set identifier coefficients from src local var constraints.
for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
ineq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] =
srcLocalVarCst.atIneq(r, j);
// Local terms.
for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
ineq[newLocalIdOffset + j] = srcLocalVarCst.atIneq(r, srcNumIds + j);
// Set constant term.
ineq[ineq.size() - 1] =
srcLocalVarCst.atIneq(r, srcLocalVarCst.getNumCols() - 1);
dependenceDomain->addInequality(ineq);
}
for (unsigned r = 0, e = destLocalVarCst.getNumInequalities(); r < e; r++) {
std::fill(ineq.begin(), ineq.end(), 0);
// Set identifier coefficients from dest local var constraints.
for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
ineq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] =
destLocalVarCst.atIneq(r, j);
// Local terms.
for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
ineq[newLocalIdOffset + numSrcLocalIds + j] =
destLocalVarCst.atIneq(r, dstNumIds + j);
// Set constant term.
ineq[ineq.size() - 1] =
destLocalVarCst.atIneq(r, destLocalVarCst.getNumCols() - 1);
dependenceDomain->addInequality(ineq);
}
return success();
}
// Returns the number of outer loop common to 'src/dstDomain'.
// Loops common to 'src/dst' domains are added to 'commonLoops' if non-null.
static unsigned
getNumCommonLoops(const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain,
SmallVectorImpl<AffineForOp> *commonLoops = nullptr) {
// Find the number of common loops shared by src and dst accesses.
unsigned minNumLoops =
std::min(srcDomain.getNumDimIds(), dstDomain.getNumDimIds());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (!isForInductionVar(srcDomain.getIdValue(i)) ||
!isForInductionVar(dstDomain.getIdValue(i)) ||
srcDomain.getIdValue(i) != dstDomain.getIdValue(i))
break;
if (commonLoops != nullptr)
commonLoops->push_back(getForInductionVarOwner(srcDomain.getIdValue(i)));
++numCommonLoops;
}
if (commonLoops != nullptr)
assert(commonLoops->size() == numCommonLoops);
return numCommonLoops;
}
// Returns Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
static Block *getCommonBlock(const MemRefAccess &srcAccess,
const MemRefAccess &dstAccess,
const FlatAffineConstraints &srcDomain,
unsigned numCommonLoops) {
if (numCommonLoops == 0) {
auto *block = srcAccess.opInst->getBlock();
while (!llvm::isa<FuncOp>(block->getParentOp())) {
block = block->getParentOp()->getBlock();
}
return block;
}
auto commonForValue = srcDomain.getIdValue(numCommonLoops - 1);
auto forOp = getForInductionVarOwner(commonForValue);
assert(forOp && "commonForValue was not an induction variable");
return forOp.getBody();
}
// Returns true if the ancestor operation of 'srcAccess' appears before the
// ancestor operation of 'dstAccess' in the common ancestral block. Returns
// false otherwise.
// Note that because 'srcAccess' or 'dstAccess' may be nested in conditionals,
// the function is named 'srcAppearsBeforeDstInCommonBlock'. Note that
// 'numCommonLoops' is the number of contiguous surrounding outer loops.
static bool srcAppearsBeforeDstInAncestralBlock(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
const FlatAffineConstraints &srcDomain, unsigned numCommonLoops) {
// Get Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
auto *commonBlock =
getCommonBlock(srcAccess, dstAccess, srcDomain, numCommonLoops);
// Check the dominance relationship between the respective ancestors of the
// src and dst in the Block of the innermost among the common loops.
auto *srcInst = commonBlock->findAncestorOpInBlock(*srcAccess.opInst);
assert(srcInst != nullptr);
auto *dstInst = commonBlock->findAncestorOpInBlock(*dstAccess.opInst);
assert(dstInst != nullptr);
// Determine whether dstInst comes after srcInst.
return srcInst->isBeforeInBlock(dstInst);
}
// Adds ordering constraints to 'dependenceDomain' based on number of loops
// common to 'src/dstDomain' and requested 'loopDepth'.
// Note that 'loopDepth' cannot exceed the number of common loops plus one.
// EX: Given a loop nest of depth 2 with IVs 'i' and 'j':
// *) If 'loopDepth == 1' then one constraint is added: i' >= i + 1
// *) If 'loopDepth == 2' then two constraints are added: i == i' and j' > j + 1
// *) If 'loopDepth == 3' then two constraints are added: i == i' and j == j'
static void addOrderingConstraints(const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain,
unsigned loopDepth,
FlatAffineConstraints *dependenceDomain) {
unsigned numCols = dependenceDomain->getNumCols();
SmallVector<int64_t, 4> eq(numCols);
unsigned numSrcDims = srcDomain.getNumDimIds();
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
unsigned numCommonLoopConstraints = std::min(numCommonLoops, loopDepth);
for (unsigned i = 0; i < numCommonLoopConstraints; ++i) {
std::fill(eq.begin(), eq.end(), 0);
eq[i] = -1;
eq[i + numSrcDims] = 1;
if (i == loopDepth - 1) {
eq[numCols - 1] = -1;
dependenceDomain->addInequality(eq);
} else {
dependenceDomain->addEquality(eq);
}
}
}
// Computes distance and direction vectors in 'dependences', by adding
// variables to 'dependenceDomain' which represent the difference of the IVs,
// eliminating all other variables, and reading off distance vectors from
// equality constraints (if possible), and direction vectors from inequalities.
static void computeDirectionVector(
const FlatAffineConstraints &srcDomain,
const FlatAffineConstraints &dstDomain, unsigned loopDepth,
FlatAffineConstraints *dependenceDomain,
SmallVector<DependenceComponent, 2> *dependenceComponents) {
// Find the number of common loops shared by src and dst accesses.
SmallVector<AffineForOp, 4> commonLoops;
unsigned numCommonLoops =
getNumCommonLoops(srcDomain, dstDomain, &commonLoops);
if (numCommonLoops == 0)
return;
// Compute direction vectors for requested loop depth.
unsigned numIdsToEliminate = dependenceDomain->getNumIds();
// Add new variables to 'dependenceDomain' to represent the direction
// constraints for each shared loop.
for (unsigned j = 0; j < numCommonLoops; ++j) {
dependenceDomain->addDimId(j);
}
// Add equality constraints for each common loop, setting newly introduced
// variable at column 'j' to the 'dst' IV minus the 'src IV.
SmallVector<int64_t, 4> eq;
eq.resize(dependenceDomain->getNumCols());
unsigned numSrcDims = srcDomain.getNumDimIds();
// Constraint variables format:
// [num-common-loops][num-src-dim-ids][num-dst-dim-ids][num-symbols][constant]
for (unsigned j = 0; j < numCommonLoops; ++j) {
std::fill(eq.begin(), eq.end(), 0);
eq[j] = 1;
eq[j + numCommonLoops] = 1;
eq[j + numCommonLoops + numSrcDims] = -1;
dependenceDomain->addEquality(eq);
}
// Eliminate all variables other than the direction variables just added.
dependenceDomain->projectOut(numCommonLoops, numIdsToEliminate);
// Scan each common loop variable column and set direction vectors based
// on eliminated constraint system.
dependenceComponents->resize(numCommonLoops);
for (unsigned j = 0; j < numCommonLoops; ++j) {
(*dependenceComponents)[j].op = commonLoops[j].getOperation();
auto lbConst = dependenceDomain->getConstantLowerBound(j);
(*dependenceComponents)[j].lb =
lbConst.getValueOr(std::numeric_limits<int64_t>::min());
auto ubConst = dependenceDomain->getConstantUpperBound(j);
(*dependenceComponents)[j].ub =
ubConst.getValueOr(std::numeric_limits<int64_t>::max());
}
}
// Populates 'accessMap' with composition of AffineApplyOps reachable from
// indices of MemRefAccess.
void MemRefAccess::getAccessMap(AffineValueMap *accessMap) const {
// Get affine map from AffineLoad/Store.
AffineMap map;
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst))
map = loadOp.getAffineMap();
else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst))
map = storeOp.getAffineMap();
SmallVector<Value, 8> operands(indices.begin(), indices.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
accessMap->reset(map, operands);
}
// Builds a flat affine constraint system to check if there exists a dependence
// between memref accesses 'srcAccess' and 'dstAccess'.
// Returns 'NoDependence' if the accesses can be definitively shown not to
// access the same element.
// Returns 'HasDependence' if the accesses do access the same element.
// Returns 'Failure' if an error or unsupported case was encountered.
// If a dependence exists, returns in 'dependenceComponents' a direction
// vector for the dependence, with a component for each loop IV in loops
// common to both accesses (see Dependence in AffineAnalysis.h for details).
//
// The memref access dependence check is comprised of the following steps:
// *) Compute access functions for each access. Access functions are computed
// using AffineValueMaps initialized with the indices from an access, then
// composed with AffineApplyOps reachable from operands of that access,
// until operands of the AffineValueMap are loop IVs or symbols.
// *) Build iteration domain constraints for each access. Iteration domain
// constraints are pairs of inequality constraints representing the
// upper/lower loop bounds for each AffineForOp in the loop nest associated
// with each access.
// *) Build dimension and symbol position maps for each access, which map
// Values from access functions and iteration domains to their position
// in the merged constraint system built by this method.
//
// This method builds a constraint system with the following column format:
//
// [src-dim-identifiers, dst-dim-identifiers, symbols, constant]
//
// For example, given the following MLIR code with "source" and "destination"
// accesses to the same memref label, and symbols %M, %N, %K:
//
// affine.for %i0 = 0 to 100 {
// affine.for %i1 = 0 to 50 {
// %a0 = affine.apply
// (d0, d1) -> (d0 * 2 - d1 * 4 + s1, d1 * 3 - s0) (%i0, %i1)[%M, %N]
// // Source memref access.
// store %v0, %m[%a0#0, %a0#1] : memref<4x4xf32>
// }
// }
//
// affine.for %i2 = 0 to 100 {
// affine.for %i3 = 0 to 50 {
// %a1 = affine.apply
// (d0, d1) -> (d0 * 7 + d1 * 9 - s1, d1 * 11 + s0) (%i2, %i3)[%K, %M]
// // Destination memref access.
// %v1 = load %m[%a1#0, %a1#1] : memref<4x4xf32>
// }
// }
//
// The access functions would be the following:
//
// src: (%i0 * 2 - %i1 * 4 + %N, %i1 * 3 - %M)
// dst: (%i2 * 7 + %i3 * 9 - %M, %i3 * 11 - %K)
//
// The iteration domains for the src/dst accesses would be the following:
//
// src: 0 <= %i0 <= 100, 0 <= %i1 <= 50
// dst: 0 <= %i2 <= 100, 0 <= %i3 <= 50
//
// The symbols by both accesses would be assigned to a canonical position order
// which will be used in the dependence constraint system:
//
// symbol name: %M %N %K
// symbol pos: 0 1 2
//
// Equality constraints are built by equating each result of src/destination
// access functions. For this example, the following two equality constraints
// will be added to the dependence constraint system:
//
// [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
// 2 -4 -7 -9 1 1 0 0 = 0
// 0 3 0 -11 -1 0 1 0 = 0
//
// Inequality constraints from the iteration domain will be meged into
// the dependence constraint system
//
// [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
// 1 0 0 0 0 0 0 0 >= 0
// -1 0 0 0 0 0 0 100 >= 0
// 0 1 0 0 0 0 0 0 >= 0
// 0 -1 0 0 0 0 0 50 >= 0
// 0 0 1 0 0 0 0 0 >= 0
// 0 0 -1 0 0 0 0 100 >= 0
// 0 0 0 1 0 0 0 0 >= 0
// 0 0 0 -1 0 0 0 50 >= 0
//
//
// TODO(andydavis) Support AffineExprs mod/floordiv/ceildiv.
DependenceResult mlir::checkMemrefAccessDependence(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
unsigned loopDepth, FlatAffineConstraints *dependenceConstraints,
SmallVector<DependenceComponent, 2> *dependenceComponents, bool allowRAR) {
LLVM_DEBUG(llvm::dbgs() << "Checking for dependence at depth: "
<< Twine(loopDepth) << " between:\n";);
LLVM_DEBUG(srcAccess.opInst->dump(););
LLVM_DEBUG(dstAccess.opInst->dump(););
// Return 'NoDependence' if these accesses do not access the same memref.
if (srcAccess.memref != dstAccess.memref)
return DependenceResult::NoDependence;
// Return 'NoDependence' if one of these accesses is not an AffineStoreOp.
if (!allowRAR && !isa<AffineStoreOp>(srcAccess.opInst) &&
!isa<AffineStoreOp>(dstAccess.opInst))
return DependenceResult::NoDependence;
// Get composed access function for 'srcAccess'.
AffineValueMap srcAccessMap;
srcAccess.getAccessMap(&srcAccessMap);
// Get composed access function for 'dstAccess'.
AffineValueMap dstAccessMap;
dstAccess.getAccessMap(&dstAccessMap);
// Get iteration domain for the 'srcAccess' operation.
FlatAffineConstraints srcDomain;
if (failed(getInstIndexSet(srcAccess.opInst, &srcDomain)))
return DependenceResult::Failure;
// Get iteration domain for 'dstAccess' operation.
FlatAffineConstraints dstDomain;
if (failed(getInstIndexSet(dstAccess.opInst, &dstDomain)))
return DependenceResult::Failure;
// Return 'NoDependence' if loopDepth > numCommonLoops and if the ancestor
// operation of 'srcAccess' does not properly dominate the ancestor
// operation of 'dstAccess' in the same common operation block.
// Note: this check is skipped if 'allowRAR' is true, because because RAR
// deps can exist irrespective of lexicographic ordering b/w src and dst.
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
assert(loopDepth <= numCommonLoops + 1);
if (!allowRAR && loopDepth > numCommonLoops &&
!srcAppearsBeforeDstInAncestralBlock(srcAccess, dstAccess, srcDomain,
numCommonLoops)) {
return DependenceResult::NoDependence;
}
// Build dim and symbol position maps for each access from access operand
// Value to position in merged constraint system.
ValuePositionMap valuePosMap;
buildDimAndSymbolPositionMaps(srcDomain, dstDomain, srcAccessMap,
dstAccessMap, &valuePosMap,
dependenceConstraints);
initDependenceConstraints(srcDomain, dstDomain, srcAccessMap, dstAccessMap,
valuePosMap, dependenceConstraints);
assert(valuePosMap.getNumDims() ==
srcDomain.getNumDimIds() + dstDomain.getNumDimIds());
// Create memref access constraint by equating src/dst access functions.
// Note that this check is conservative, and will fail in the future when
// local variables for mod/div exprs are supported.
if (failed(addMemRefAccessConstraints(srcAccessMap, dstAccessMap, valuePosMap,
dependenceConstraints)))
return DependenceResult::Failure;
// Add 'src' happens before 'dst' ordering constraints.
addOrderingConstraints(srcDomain, dstDomain, loopDepth,
dependenceConstraints);
// Add src and dst domain constraints.
addDomainConstraints(srcDomain, dstDomain, valuePosMap,
dependenceConstraints);
// Return 'NoDependence' if the solution space is empty: no dependence.
if (dependenceConstraints->isEmpty()) {
return DependenceResult::NoDependence;
}
// Compute dependence direction vector and return true.
if (dependenceComponents != nullptr) {
computeDirectionVector(srcDomain, dstDomain, loopDepth,
dependenceConstraints, dependenceComponents);
}
LLVM_DEBUG(llvm::dbgs() << "Dependence polyhedron:\n");
LLVM_DEBUG(dependenceConstraints->dump());
return DependenceResult::HasDependence;
}
/// Gathers dependence components for dependences between all ops in loop nest
/// rooted at 'forOp' at loop depths in range [1, maxLoopDepth].
void mlir::getDependenceComponents(
AffineForOp forOp, unsigned maxLoopDepth,
std::vector<SmallVector<DependenceComponent, 2>> *depCompsVec) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOpInsts;
forOp.getOperation()->walk([&](Operation *opInst) {
if (isa<AffineLoadOp>(opInst) || isa<AffineStoreOp>(opInst))
loadAndStoreOpInsts.push_back(opInst);
});
unsigned numOps = loadAndStoreOpInsts.size();
for (unsigned d = 1; d <= maxLoopDepth; ++d) {
for (unsigned i = 0; i < numOps; ++i) {
auto *srcOpInst = loadAndStoreOpInsts[i];
MemRefAccess srcAccess(srcOpInst);
for (unsigned j = 0; j < numOps; ++j) {
auto *dstOpInst = loadAndStoreOpInsts[j];
MemRefAccess dstAccess(dstOpInst);
FlatAffineConstraints dependenceConstraints;
SmallVector<DependenceComponent, 2> depComps;
// TODO(andydavis,bondhugula) Explore whether it would be profitable
// to pre-compute and store deps instead of repeatedly checking.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints, &depComps);
if (hasDependence(result))
depCompsVec->push_back(depComps);
}
}
}
}