Files
clang-p2996/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp
Stephan Herhut 283b5e733d [MLIR] Make gpu.launch implicitly capture uses of values defined above.
Summary:
In the original design, gpu.launch required explicit capture of uses
and passing them as operands to the gpu.launch operation. This was
motivated by infrastructure restrictions rather than design. This
change lifts the requirement and removes the concept of kernel
arguments from gpu.launch. Instead, the kernel outlining
transformation now does the explicit capturing.

This is a breaking change for users of gpu.launch.

Differential Revision: https://reviews.llvm.org/D73769
2020-02-03 10:08:48 +01:00

490 lines
19 KiB
C++

//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::loop;
using llvm::seq;
// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.lowerBound());
return bounds;
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.upperBound());
return bounds;
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
}
static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
return forOp.lowerBound();
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
return forOp.upperBound();
}
// Check the structure of the loop nest:
// - there are enough loops to map to numDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
template <typename OpTy>
static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
Region &limit = forOp.region();
for (unsigned i = 0, e = numDims; i < e; ++i) {
Operation *nested = &forOp.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
return forOp.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
if (forOp.getBody()->empty() || std::next(begin, 2) != end)
return forOp.emitError("expected perfectly nested loops in the body");
if (!(forOp = dyn_cast<OpTy>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
template <typename OpTy>
static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
OpBuilder builder(forOp.getOperation());
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}
template <typename OpTy>
static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
if (numBlockDims != numThreadDims) {
// TODO(ravishankarm) : This can probably be relaxed by having a one-trip
// loop for the missing dimension, but there is not reason to handle this
// case for now.
return forOp.emitError(
"mismatch in block dimensions and thread dimensions");
}
// Check that the forOp contains perfectly nested loops for numBlockDims
if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
return failure();
}
// Get to the innermost loop.
for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
forOp = cast<OpTy>(&forOp.getBody()->front());
(void)i;
}
// The forOp now points to the body of the innermost loop mapped to blocks.
for (Operation &op : *forOp.getBody()) {
// If the operation is a loop, check that it is mappable to workItems.
if (auto innerLoop = dyn_cast<OpTy>(&op)) {
if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
return failure();
}
continue;
}
// TODO(ravishankarm) : If it is not a loop op, it is assumed that the
// statement is executed by all threads. It might be a collective operation,
// or some non-side effect instruction. Have to decide on "allowable"
// statements and check for those here.
}
return success();
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct LoopToGpuConverter {
template <typename OpTy>
Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
template <typename OpTy>
void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
return def.getValue() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
template <typename OpTy>
Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
OpTy currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return llvm::None;
}
Value range =
builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
Value step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<OpTy>(&currentLoop.getBody()->front());
}
return currentLoop;
}
/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
/// be partitioned across workgroups or workitems. The values for the
/// workgroup/workitem id along each dimension is passed in with `ids`. The
/// number of workgroups/workitems along each dimension are passed in with
/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
/// next innermost loop to y-dimension, followed by z-dimension.
template <typename OpTy>
static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
ArrayRef<Value> nids) {
auto nDims = ids.size();
assert(nDims == nids.size());
for (auto dim : llvm::seq<unsigned>(0, nDims)) {
// TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
// number of iterations of the original loop, this becomes a if
// condition. Though that does rely on how the workgroup/workitem sizes are
// specified to begin with.
mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
if (dim != nDims - 1) {
rootForOp = cast<OpTy>(rootForOp.getBody()->front());
}
}
return rootForOp;
}
/// Utility method to convert the gpu::KernelDim3 object for representing id of
/// each workgroup/workitem and number of workgroup/workitems along a dimension
/// of the launch into a container.
static void packIdAndNumId(gpu::KernelDim3 kernelIds,
gpu::KernelDim3 kernelNids, unsigned nDims,
SmallVectorImpl<Value> &ids,
SmallVectorImpl<Value> &nids) {
assert(nDims <= 3 && "invalid number of launch dimensions");
SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
ids.clear();
ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
nids.clear();
nids.append(std::next(allNids.begin(), allNids.size() - nDims),
allNids.end());
}
/// Generate the body of the launch operation.
template <typename OpTy>
static LogicalResult
createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp,
unsigned numBlockDims, unsigned numThreadDims) {
OpBuilder::InsertionGuard bodyInsertionGuard(builder);
builder.setInsertionPointToEnd(&launchOp.body().front());
auto terminatorOp = builder.create<gpu::TerminatorOp>(launchOp.getLoc());
rootForOp.getOperation()->moveBefore(terminatorOp);
SmallVector<Value, 3> workgroupID, numWorkGroups;
packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
workgroupID, numWorkGroups);
// Partition the loop for mapping to workgroups.
auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);
// Iterate over the body of the loopOp and get the loops to partition for
// thread blocks.
SmallVector<OpTy, 1> threadRootForOps;
for (Operation &op : *loopOp.getBody()) {
if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
threadRootForOps.push_back(threadRootForOp);
}
}
SmallVector<Value, 3> workItemID, workGroupSize;
packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
numThreadDims, workItemID, workGroupSize);
for (auto &loopOp : threadRootForOps) {
builder.setInsertionPoint(loopOp);
createGPULaunchLoops(loopOp, workItemID, workGroupSize);
}
return success();
}
// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
// given workgroup size and number of workgroups.
template <typename OpTy>
static LogicalResult createLaunchFromOp(OpTy rootForOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
OpBuilder builder(rootForOp.getOperation());
if (numWorkGroups.size() > 3) {
return rootForOp.emitError("invalid ")
<< numWorkGroups.size() << "-D workgroup specification";
}
auto loc = rootForOp.getLoc();
Value one = builder.create<ConstantOp>(
loc, builder.getIntegerAttr(builder.getIndexType(), 1));
SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
for (auto numWorkGroup : enumerate(numWorkGroups)) {
numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
}
for (auto workGroupSize : enumerate(workGroupSizes)) {
workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
}
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
workGroupSize3D[2]);
if (failed(createLaunchBody(builder, rootForOp, launchOp,
numWorkGroups.size(), workGroupSizes.size()))) {
return failure();
}
return success();
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
// TODO(ravishankarm) : This method can be modified to use the
// createLaunchFromOp method, since that is a strict generalization of this
// method.
template <typename OpTy>
void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value constOne = (numBlockDims < 3 || numThreadDims < 3)
? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op.
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ);
// Replace the loop terminator (loops contain only a single block) with the
// gpu terminator and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None);
launchOp.body().front().getOperations().splice(
launchOp.body().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.body().front());
auto lbArgumentIt = lbs.begin();
auto stepArgumentIt = steps.begin();
for (auto en : llvm::enumerate(ivs)) {
Value id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);
Value ivReplacement =
builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value().replaceAllUsesWith(ivReplacement);
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
template <typename OpTy>
static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
LoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
// Generic loop to GPU kernel conversion function when loop is imperfectly
// nested. The workgroup size and num workgroups is provided as input
template <typename OpTy>
static LogicalResult convertLoopToGPULaunch(OpTy forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSize) {
if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
workGroupSize.size()))) {
return failure();
}
return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
}