This is an artifact from merging MLIR into LLVM, the file headers are now aligned with the rest of the project.
96 lines
3.4 KiB
C++
96 lines
3.4 KiB
C++
//===- Statistics.cpp - Collects statistics over tensors ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Quantizer/Support/Statistics.h"
|
|
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::quantizer;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeTensorStatistics implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void collectElementsStatisticsDim(ElementsAttr attr,
|
|
unsigned numElements,
|
|
ArrayRef<int64_t> shape,
|
|
SmallVectorImpl<uint64_t> &indices,
|
|
uint64_t dim,
|
|
TensorAxisStatistics &statistics) {
|
|
// Recursive terminating condition.
|
|
if (dim >= shape.size())
|
|
return;
|
|
|
|
if (dim < (shape.size() - 1)) {
|
|
// Recurse past dim.
|
|
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
|
|
indices[dim] = i;
|
|
collectElementsStatisticsDim(attr, numElements, shape, indices, dim + 1,
|
|
statistics);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Collection dim.
|
|
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
|
|
indices[dim] = i;
|
|
double value = attr.getValue<FloatAttr>(indices).getValueAsDouble();
|
|
statistics.minValue = std::min(statistics.minValue, value);
|
|
statistics.maxValue = std::max(statistics.maxValue, value);
|
|
statistics.mean += value / numElements;
|
|
// TODO: Calculate a running variance.
|
|
}
|
|
}
|
|
|
|
static bool getElementsStatistics(ElementsAttr attr,
|
|
TensorAxisStatistics &statistics) {
|
|
statistics.clear();
|
|
statistics.minValue = std::numeric_limits<double>::infinity();
|
|
statistics.maxValue = -std::numeric_limits<double>::infinity();
|
|
|
|
ShapedType sType = attr.getType();
|
|
if (!sType.hasStaticShape())
|
|
return false;
|
|
Type elementTy = sType.getElementType();
|
|
if (!elementTy.isa<FloatType>())
|
|
return false;
|
|
|
|
SmallVector<uint64_t, 4> indices;
|
|
indices.resize(sType.getRank());
|
|
ArrayRef<int64_t> shape = sType.getShape();
|
|
|
|
auto numElements = sType.getNumElements();
|
|
collectElementsStatisticsDim(attr, numElements, shape, indices, 0,
|
|
statistics);
|
|
statistics.sampleSize = numElements;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AttributeTensorStatistics::get(TensorAxisStatistics &stats) const {
|
|
if (FloatAttr floatAttr = attr.dyn_cast<FloatAttr>()) {
|
|
double value = floatAttr.getValueAsDouble();
|
|
stats = TensorAxisStatistics(1, value, value, value, 0);
|
|
return true;
|
|
} else if (auto eltAttr = attr.dyn_cast<ElementsAttr>()) {
|
|
return getElementsStatistics(eltAttr, stats);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
raw_ostream &mlir::quantizer::operator<<(raw_ostream &os,
|
|
const TensorAxisStatistics &stats) {
|
|
os << "STATS[sampleSize=" << stats.sampleSize << ", min=" << stats.minValue
|
|
<< ", maxValue=" << stats.maxValue << ", mean=" << stats.mean
|
|
<< ", variance=" << stats.variance << "]";
|
|
return os;
|
|
}
|