Files
clang-p2996/mlir/lib/Quantizer/Support/UniformConstraints.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

257 lines
9.2 KiB
C++

//===- UniformConstraints.cpp - Constraints for uniform quant -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Quantizer/Support/UniformConstraints.h"
#include "mlir/Dialect/QuantOps/QuantTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Quantizer/Support/Configuration.h"
#include "mlir/Quantizer/Support/ConstraintAnalysisGraph.h"
#include "mlir/Quantizer/Support/Metadata.h"
#include "mlir/Quantizer/Support/Rules.h"
#include "mlir/Quantizer/Support/TypeUtils.h"
#include "mlir/Quantizer/Support/UniformSolvers.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::quantizer;
using namespace mlir::quant;
namespace {
struct ClusteredFacts {
ExpandingMinMaxFact requiredRange;
DiscreteScaleZeroPointFact explicitScaleZeroPoint;
};
} // end anonymous namespace
static QuantizedType solveUniformType(SolverContext &solverContext,
const ClusteredFacts &clusteredFacts,
const CandidateQuantizedType &ct,
Type originalElementType, Location loc) {
switch (ct.scheme) {
default:
emitError(loc, "unsupported scheme for uniform type conversion");
return nullptr;
case CandidateQuantizedType::Scheme::UniformPerLayer: {
if (!clusteredFacts.requiredRange.hasValue()) {
// TODO: Issue some kind of diagnostic. This is not an error.
return nullptr;
}
uint64_t numLevels = ct.quantizedType.getStorageTypeMax() -
ct.quantizedType.getStorageTypeMin();
UniformStorageParams params{numLevels,
ct.quantizedType.getStorageTypeMin()};
UniformParamsFromMinMaxSolver solver(
params, clusteredFacts.requiredRange.getValue().first,
clusteredFacts.requiredRange.getValue().second);
if (!solver.compute()) {
emitWarning(loc) << "unable to solve uniform type with "
<< "UniformParamsFromMinMaxSolver";
return nullptr;
}
return UniformQuantizedType::getChecked(
ct.quantizedType.getFlags(), ct.quantizedType.getStorageType(),
originalElementType, solver.getScale(), solver.getZp(),
ct.quantizedType.getStorageTypeMin(),
ct.quantizedType.getStorageTypeMax(), loc);
}
case CandidateQuantizedType::Scheme::UniformExplicitFixedPointScale: {
if (!clusteredFacts.explicitScaleZeroPoint.hasValue()) {
emitRemark(loc)
<< "unable to solve uniform type with UniformExplicitFixedPointScale "
<< "(no explicitScaleZeroPoint)";
return nullptr;
}
const auto &scaleZp = clusteredFacts.explicitScaleZeroPoint.getValue();
assert(scaleZp.value && "optional value not set on fact");
if (scaleZp.conflict) {
emitWarning(loc)
<< "conflicting explicit scale/zeroPoint on node cluster: "
<< "an arbitrary scale/zeroPoint will be used";
}
return UniformQuantizedType::getChecked(
ct.quantizedType.getFlags(), ct.quantizedType.getStorageType(),
originalElementType,
scaleZp.value->first, // scale
0, // zeroPoint (fixed point solutions only for this scheme)
ct.quantizedType.getStorageTypeMin(),
ct.quantizedType.getStorageTypeMax(), loc);
return nullptr;
}
}
}
namespace {
class PropagateExplicitScale : public CAGConstraintNode {
public:
PropagateExplicitScale()
: CAGConstraintNode(Kind::UniformPropagateExplicitScale) {}
static bool classof(const CAGNode *n) {
return n->getKind() == Kind::Constraint ||
n->getKind() == Kind::UniformPropagateExplicitScale;
}
private:
void printLabel(raw_ostream &os) const override {
os << "PropagateExplicitScale";
}
void propagate(SolverContext &solverContext,
const TargetConfiguration &config) override {
DiscreteScaleZeroPointFact scaleZp;
// Get scale/zp from all parents.
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto selectedType = parentAnchor->getUniformMetadata().selectedType;
if (auto uqType = selectedType.dyn_cast_or_null<UniformQuantizedType>()) {
scaleZp.assertValue(
CAGUniformMetadata::SalienceRequired,
std::make_pair(uqType.getScale(), static_cast<int64_t>(0)));
}
}
// Propagate to children.
if (scaleZp.hasValue()) {
for (auto it = begin(), e = end(); it != e; ++it) {
auto childAnchor = cast<CAGAnchorNode>(*it);
if (modified(childAnchor->getUniformMetadata()
.explicitScaleZeroPoint.mergeFrom(scaleZp))) {
childAnchor->markDirty();
}
}
}
}
};
/// A constraint node which will solve uniform quantization for all parents
/// of the constraint, assuming that they are coupled.
class SolveUniformConstraintNode : public CAGConstraintNode {
public:
SolveUniformConstraintNode()
: CAGConstraintNode(Kind::SolveUniformConstraint) {
markDirty();
}
static bool classof(const CAGNode *n) {
return n->getKind() == Kind::Constraint ||
n->getKind() == Kind::SolveUniformConstraint;
}
private:
void printLabel(raw_ostream &os) const override { os << "SolveUniform"; }
void propagate(SolverContext &solverContext,
const TargetConfiguration &config) override {
// First determine the required min/max range and type constraints.
Location fusedLoc = UnknownLoc::get(&solverContext.getMlirContext());
llvm::SmallBitVector enabledCandidateTypesMask(
config.getAllCandidateTypesMask());
ClusteredFacts clusteredFacts;
Type originalElementType;
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto metadata = parentAnchor->getUniformMetadata();
// TODO: Possibly use a location that fuses all involved parents.
fusedLoc = parentAnchor->getOp()->getLoc();
// Shared element type.
auto parentOriginalElementType =
getElementOrPrimitiveType(parentAnchor->getOriginalType());
if (!originalElementType) {
originalElementType = parentOriginalElementType;
} else {
if (originalElementType != parentOriginalElementType) {
parentAnchor->getOp()->emitError()
<< "cannot compute uniform type: parent element types mismatch";
return;
}
}
// Range.
clusteredFacts.requiredRange.mergeFrom(metadata.requiredRange);
// Explicit scale and zero point.
clusteredFacts.explicitScaleZeroPoint.mergeFrom(
metadata.explicitScaleZeroPoint);
// Shared candidate types.
enabledCandidateTypesMask.reset(metadata.disabledCandidateTypes);
}
// Find the first enabled candidate type.
const CandidateQuantizedType *bestCandidateType = nullptr;
for (auto &ct : config.getCandidateTypes()) {
if (enabledCandidateTypesMask.test(ct.ordinal)) {
bestCandidateType = &ct;
break;
}
}
if (!bestCandidateType || !originalElementType) {
emitRemark(fusedLoc)
<< "not solving uniform type (no viable candidate type)";
return;
}
// Solve for the type.
QuantizedType selectedType =
solveUniformType(solverContext, clusteredFacts, *bestCandidateType,
originalElementType, fusedLoc);
// Apply it to all parents.
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto &metadata = parentAnchor->getUniformMetadata();
if (metadata.selectedType != selectedType) {
metadata.selectedType = selectedType;
// And mark all children of the parent dirty (except us).
for (auto child : *parentAnchor) {
if (child != this) {
child->markDirty();
}
}
}
}
}
};
} // end anonymous namespace
void UniformConstraintsBuilder::coupleAnchors(CAGAnchorNode *a,
CAGAnchorNode *b) {
slice.addClusteredConstraint<SolveUniformConstraintNode>({a, b});
}
void UniformConstraintsBuilder::applyStats(CAGAnchorNode *a,
TensorAxisStatistics stats) {
a->getUniformMetadata().requiredRange.assertValue(
CAGUniformMetadata::SalienceDefault, {stats.minValue, stats.maxValue});
}
void UniformConstraintsBuilder::clamp(CAGAnchorNode *a, APFloat minValue,
APFloat maxValue) {
a->getUniformMetadata().requiredRange.assertValue(
CAGUniformMetadata::SalienceDefault,
{minValue.convertToDouble(), maxValue.convertToDouble()});
}
void UniformConstraintsBuilder::propagateExplicitScale(CAGAnchorNode *from,
CAGAnchorNode *to) {
slice.addUnidirectionalConstraint<PropagateExplicitScale>(from, {to});
}