Files
clang-p2996/mlir/lib/Quantizer/Support/UniformSolvers.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

144 lines
4.8 KiB
C++

//===- UniformSolvers.cpp - Uniform type solver algorithms ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Quantizer/Support/UniformSolvers.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/raw_ostream.h"
#include <cmath>
using namespace mlir;
using namespace mlir::quantizer;
bool UniformParamsFromMinMaxSolver::compute() {
// Compute adjMin, adjMax, clamping to ensure that they straddle zero.
if (boundingMin > 0 && boundingMax >= boundingMin) {
// Lop-sided to the positive.
adjMin = 0;
adjMax = boundingMax;
} else if (boundingMax < 0 && boundingMin <= boundingMax) {
// Lop-sided to the negative.
adjMin = boundingMin;
adjMax = 0;
} else if (boundingMin <= 0 && boundingMax >= 0) {
adjMin = boundingMin;
adjMax = boundingMax;
} else {
// Illegal bounds.
return satisfied = false;
}
const double origMinAdj = adjMin;
const double origMaxAdj = adjMax;
const double numLevelsDouble = storageParams.numLevels;
struct fns {
static std::pair<double, double>
computeMinMax(double boundingMin, double numLevels, double delta) {
double adjMin = delta * std::floor(boundingMin / delta);
return std::make_pair(adjMin, adjMin + numLevels * delta);
}
static double overshoot(double boundingMin, double boundingMax,
double numLevels, double delta) {
auto adjMinMax = computeMinMax(boundingMin, numLevels, delta);
double maxOvershoot = adjMinMax.second - boundingMax;
double minOvershoot = boundingMin - adjMinMax.first;
// If undershooting on the min or max end, return that because it is
// to be unconditionally avoided. Otherwise return the end with the
// greatest magnitude of overshoot.
if (maxOvershoot < 0)
return maxOvershoot;
if (minOvershoot < 0)
return minOvershoot;
return std::max(maxOvershoot, minOvershoot);
}
};
// Bisect to find a suitable delta, starting with bounds of deltaInit
// and deltaMax.
double deltaInit = (adjMax - adjMin) / numLevelsDouble;
double deltaMax =
((numLevelsDouble * deltaInit) + 2 * deltaInit) / numLevelsDouble;
double deltaMid;
double prevDeltaMid = 0.0;
for (stepCount = 0; stepCount < 60; ++stepCount) {
deltaMid = (deltaInit + deltaMax) / 2.0;
auto fInit =
fns::overshoot(origMinAdj, origMaxAdj, numLevelsDouble, deltaInit);
auto fMid =
fns::overshoot(origMinAdj, origMaxAdj, numLevelsDouble, deltaMid);
if (fMid == 0 || (fMid > 0 && std::fabs(deltaMid - prevDeltaMid) < 1e-15)) {
// Solution found (or step size is infinitesimal and an overshoot).
// Empirically, this seems to terminate around 30-50 steps or so.
// This will find a zero point for exactly representable ranges and
// will terminate on a small step size for inexact, biasing towards
// overshooting.
delta = deltaMid;
break;
}
bool signMid = fMid > 0;
bool signInit = fInit > 0;
if (signMid == signInit) {
deltaInit = deltaMid;
} else {
deltaMax = deltaMid;
}
prevDeltaMid = deltaMid;
}
delta = deltaMid;
// Recalculate adjMin/adjMax based on new delta.
auto adjMinMax = fns::computeMinMax(origMinAdj, numLevelsDouble, delta);
adjMin = adjMinMax.first;
adjMax = adjMinMax.second;
satisfied = false;
zp = 0;
if (!std::isnan(delta) && !std::isnan(adjMin) && !std::isnan(adjMax)) {
satisfied = true;
// Finally, scale and zeroPoint. Since it casts to integer, only valid
// if the inputs are valid.
zp = std::round(storageParams.minValue - adjMin / delta);
}
return satisfied;
}
int64_t UniformParamsFromMinMaxSolver::quantize(double x) const {
int64_t xq = std::round(x / delta + zp);
return std::max<int64_t>(0, std::min<int64_t>(storageParams.numLevels, xq));
}
double UniformParamsFromMinMaxSolver::dequantize(int64_t xq) const {
return (xq - zp) * delta;
}
raw_ostream &mlir::quantizer::operator<<(raw_ostream &os,
const UniformStorageParams &p) {
os << "UniformStorageParams{" << p.numLevels << ", " << p.minValue << "}";
return os;
}
raw_ostream &
mlir::quantizer::operator<<(raw_ostream &os,
const UniformParamsFromMinMaxSolver &s) {
os << "UniformParamsFromMinMaxSolver(" << s.getStepCount() << "){";
os << "(" << s.getBoundingMin() << ":" << s.getBoundingMax() << ") -> ";
if (!s.isSatisfied()) {
os << "unsat}";
return os;
}
os << "(" << s.getAdjMin() << ":" << s.getAdjMax() << ")";
os << ", scale = " << s.getScale();
os << ", zp = " << s.getZp();
os << "}";
return os;
}