Files
clang-p2996/mlir/lib/Transforms/Inliner.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

313 lines
12 KiB
C++

//===- Inliner.cpp - Pass to inline function calls ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a basic inlining algorithm that operates bottom up over
// the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
// incremental propagation of inlining decisions from the leafs to the roots of
// the callgraph.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/CallGraph.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#define DEBUG_TYPE "inlining"
using namespace mlir;
static llvm::cl::opt<bool> disableCanonicalization(
"mlir-disable-inline-simplify",
llvm::cl::desc("Disable running simplifications during inlining"),
llvm::cl::ReallyHidden, llvm::cl::init(false));
static llvm::cl::opt<unsigned> maxInliningIterations(
"mlir-max-inline-iterations",
llvm::cl::desc("Maximum number of iterations when inlining within an SCC"),
llvm::cl::ReallyHidden, llvm::cl::init(4));
//===----------------------------------------------------------------------===//
// CallGraph traversal
//===----------------------------------------------------------------------===//
/// Run a given transformation over the SCCs of the callgraph in a bottom up
/// traversal.
static void runTransformOnCGSCCs(
const CallGraph &cg,
function_ref<void(ArrayRef<CallGraphNode *>)> sccTransformer) {
std::vector<CallGraphNode *> currentSCCVec;
auto cgi = llvm::scc_begin(&cg);
while (!cgi.isAtEnd()) {
// Copy the current SCC and increment so that the transformer can modify the
// SCC without invalidating our iterator.
currentSCCVec = *cgi;
++cgi;
sccTransformer(currentSCCVec);
}
}
namespace {
/// This struct represents a resolved call to a given callgraph node. Given that
/// the call does not actually contain a direct reference to the
/// Region(CallGraphNode) that it is dispatching to, we need to resolve them
/// explicitly.
struct ResolvedCall {
ResolvedCall(CallOpInterface call, CallGraphNode *targetNode)
: call(call), targetNode(targetNode) {}
CallOpInterface call;
CallGraphNode *targetNode;
};
} // end anonymous namespace
/// Collect all of the callable operations within the given range of blocks. If
/// `traverseNestedCGNodes` is true, this will also collect call operations
/// inside of nested callgraph nodes.
static void collectCallOps(iterator_range<Region::iterator> blocks,
CallGraph &cg, SmallVectorImpl<ResolvedCall> &calls,
bool traverseNestedCGNodes) {
SmallVector<Block *, 8> worklist;
auto addToWorklist = [&](iterator_range<Region::iterator> blocks) {
for (Block &block : blocks)
worklist.push_back(&block);
};
addToWorklist(blocks);
while (!worklist.empty()) {
for (Operation &op : *worklist.pop_back_val()) {
if (auto call = dyn_cast<CallOpInterface>(op)) {
CallInterfaceCallable callable = call.getCallableForCallee();
// TODO(riverriddle) Support inlining nested call references.
if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
if (!symRef.isa<FlatSymbolRefAttr>())
continue;
}
CallGraphNode *node = cg.resolveCallable(callable, &op);
if (!node->isExternal())
calls.emplace_back(call, node);
continue;
}
// If this is not a call, traverse the nested regions. If
// `traverseNestedCGNodes` is false, then don't traverse nested call graph
// regions.
for (auto &nestedRegion : op.getRegions())
if (traverseNestedCGNodes || !cg.lookupNode(&nestedRegion))
addToWorklist(nestedRegion);
}
}
}
//===----------------------------------------------------------------------===//
// Inliner
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a specialization of the main inlining interface.
struct Inliner : public InlinerInterface {
Inliner(MLIRContext *context, CallGraph &cg)
: InlinerInterface(context), cg(cg) {}
/// Process a set of blocks that have been inlined. This callback is invoked
/// *before* inlined terminator operations have been processed.
void
processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
collectCallOps(inlinedBlocks, cg, calls, /*traverseNestedCGNodes=*/true);
}
/// The current set of call instructions to consider for inlining.
SmallVector<ResolvedCall, 8> calls;
/// The callgraph being operated on.
CallGraph &cg;
};
} // namespace
/// Returns true if the given call should be inlined.
static bool shouldInline(ResolvedCall &resolvedCall) {
// Don't allow inlining terminator calls. We currently don't support this
// case.
if (resolvedCall.call.getOperation()->isKnownTerminator())
return false;
// Don't allow inlining if the target is an ancestor of the call. This
// prevents inlining recursively.
if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
resolvedCall.call.getParentRegion()))
return false;
// Otherwise, inline.
return true;
}
/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
static LogicalResult inlineCallsInSCC(Inliner &inliner,
ArrayRef<CallGraphNode *> currentSCC) {
CallGraph &cg = inliner.cg;
auto &calls = inliner.calls;
// Collect all of the direct calls within the nodes of the current SCC. We
// don't traverse nested callgraph nodes, because they are handled separately
// likely within a different SCC.
for (auto *node : currentSCC) {
if (!node->isExternal())
collectCallOps(*node->getCallableRegion(), cg, calls,
/*traverseNestedCGNodes=*/false);
}
if (calls.empty())
return failure();
// Try to inline each of the call operations. Don't cache the end iterator
// here as more calls may be added during inlining.
bool inlinedAnyCalls = false;
for (unsigned i = 0; i != calls.size(); ++i) {
ResolvedCall &it = calls[i];
LLVM_DEBUG({
llvm::dbgs() << "* Considering inlining call: ";
it.call.dump();
});
if (!shouldInline(it))
continue;
CallOpInterface call = it.call;
Region *targetRegion = it.targetNode->getCallableRegion();
LogicalResult inlineResult = inlineCall(
inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
targetRegion);
if (failed(inlineResult))
continue;
// If the inlining was successful, then erase the call.
call.erase();
inlinedAnyCalls = true;
}
calls.clear();
return success(inlinedAnyCalls);
}
/// Canonicalize the nodes within the given SCC with the given set of
/// canonicalization patterns.
static void canonicalizeSCC(CallGraph &cg, ArrayRef<CallGraphNode *> currentSCC,
MLIRContext *context,
const OwningRewritePatternList &canonPatterns) {
// Collect the sets of nodes to canonicalize.
SmallVector<CallGraphNode *, 4> nodesToCanonicalize;
for (auto *node : currentSCC) {
// Don't canonicalize the external node, it has no valid callable region.
if (node->isExternal())
continue;
// Don't canonicalize nodes with children. Nodes with children
// require special handling as we may remove the node during
// canonicalization. In the future, we should be able to handle this
// case with proper node deletion tracking.
if (node->hasChildren())
continue;
// We also won't apply canonicalizations for nodes that are not
// isolated. This avoids potentially mutating the regions of nodes defined
// above, this is also a stipulation of the 'applyPatternsGreedily' driver.
auto *region = node->getCallableRegion();
if (!region->getParentOp()->isKnownIsolatedFromAbove())
continue;
nodesToCanonicalize.push_back(node);
}
if (nodesToCanonicalize.empty())
return;
// Canonicalize each of the nodes within the SCC in parallel.
// NOTE: This is simple now, because we don't enable canonicalizing nodes
// within children. When we remove this restriction, this logic will need to
// be reworked.
ParallelDiagnosticHandler canonicalizationHandler(context);
llvm::parallel::for_each_n(
llvm::parallel::par, /*Begin=*/size_t(0),
/*End=*/nodesToCanonicalize.size(), [&](size_t index) {
// Set the order for this thread so that diagnostics will be properly
// ordered.
canonicalizationHandler.setOrderIDForThread(index);
// Apply the canonicalization patterns to this region.
auto *node = nodesToCanonicalize[index];
applyPatternsGreedily(*node->getCallableRegion(), canonPatterns);
// Make sure to reset the order ID for the diagnostic handler, as this
// thread may be used in a different context.
canonicalizationHandler.eraseOrderIDForThread();
});
}
/// Attempt to inline calls within the given scc, and run canonicalizations with
/// the given patterns, until a fixed point is reached. This allows for the
/// inlining of newly devirtualized calls.
static void inlineSCC(Inliner &inliner, ArrayRef<CallGraphNode *> currentSCC,
MLIRContext *context,
const OwningRewritePatternList &canonPatterns) {
// If we successfully inlined any calls, run some simplifications on the
// nodes of the scc. Continue attempting to inline until we reach a fixed
// point, or a maximum iteration count. We canonicalize here as it may
// devirtualize new calls, as well as give us a better cost model.
unsigned iterationCount = 0;
while (succeeded(inlineCallsInSCC(inliner, currentSCC))) {
// If we aren't allowing simplifications or the max iteration count was
// reached, then bail out early.
if (disableCanonicalization || ++iterationCount >= maxInliningIterations)
break;
canonicalizeSCC(inliner.cg, currentSCC, context, canonPatterns);
}
}
//===----------------------------------------------------------------------===//
// InlinerPass
//===----------------------------------------------------------------------===//
// TODO(riverriddle) This pass should currently only be used for basic testing
// of inlining functionality.
namespace {
struct InlinerPass : public OperationPass<InlinerPass> {
void runOnOperation() override {
CallGraph &cg = getAnalysis<CallGraph>();
auto *context = &getContext();
// The inliner should only be run on operations that define a symbol table,
// as the callgraph will need to resolve references.
Operation *op = getOperation();
if (!op->hasTrait<OpTrait::SymbolTable>()) {
op->emitOpError() << " was scheduled to run under the inliner, but does "
"not define a symbol table";
return signalPassFailure();
}
// Collect a set of canonicalization patterns to use when simplifying
// callable regions within an SCC.
OwningRewritePatternList canonPatterns;
for (auto *op : context->getRegisteredOperations())
op->getCanonicalizationPatterns(canonPatterns, context);
// Run the inline transform in post-order over the SCCs in the callgraph.
Inliner inliner(context, cg);
runTransformOnCGSCCs(cg, [&](ArrayRef<CallGraphNode *> scc) {
inlineSCC(inliner, scc, context, canonPatterns);
});
}
};
} // end anonymous namespace
std::unique_ptr<Pass> mlir::createInlinerPass() {
return std::make_unique<InlinerPass>();
}
static PassRegistration<InlinerPass> pass("inline", "Inline function calls");