When the sparse_tensor dialect lowers linalg.generic, it makes inferences about how the operations should affect the looping logic. For example, multiplication is an intersection while addition is a union of two sparse tensors. The new binary and unary op separate the looping logic from the computation by nesting the computation code inside a block which is merged at the appropriate level in the lowered looping code. The binary op can have custom computation code for the overlap, left, and right sparse overlap regions. The unary op can have custom computation code for the present and absent values. Reviewed by: aartbik Differential Revision: https://reviews.llvm.org/D121018
464 lines
16 KiB
C++
464 lines
16 KiB
C++
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Attribute Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
|
|
static bool acceptBitWidth(unsigned bitWidth) {
|
|
switch (bitWidth) {
|
|
case 0:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
|
|
if (failed(parser.parseLess()))
|
|
return {};
|
|
// Parse the data as a dictionary.
|
|
DictionaryAttr dict;
|
|
if (failed(parser.parseAttribute(dict)))
|
|
return {};
|
|
if (failed(parser.parseGreater()))
|
|
return {};
|
|
// Process the data from the parsed dictionary value into struct-like data.
|
|
SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dlt;
|
|
AffineMap map = {};
|
|
unsigned ptr = 0;
|
|
unsigned ind = 0;
|
|
for (const NamedAttribute &attr : dict) {
|
|
if (attr.getName() == "dimLevelType") {
|
|
auto arrayAttr = attr.getValue().dyn_cast<ArrayAttr>();
|
|
if (!arrayAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an array for dimension level types");
|
|
return {};
|
|
}
|
|
for (auto i : arrayAttr) {
|
|
auto strAttr = i.dyn_cast<StringAttr>();
|
|
if (!strAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected a string value in dimension level types");
|
|
return {};
|
|
}
|
|
auto strVal = strAttr.getValue();
|
|
if (strVal == "dense") {
|
|
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense);
|
|
} else if (strVal == "compressed") {
|
|
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed);
|
|
} else if (strVal == "singleton") {
|
|
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Singleton);
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"unexpected dimension level type: ")
|
|
<< strVal;
|
|
return {};
|
|
}
|
|
}
|
|
} else if (attr.getName() == "dimOrdering") {
|
|
auto affineAttr = attr.getValue().dyn_cast<AffineMapAttr>();
|
|
if (!affineAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an affine map for dimension ordering");
|
|
return {};
|
|
}
|
|
map = affineAttr.getValue();
|
|
} else if (attr.getName() == "pointerBitWidth") {
|
|
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
|
|
if (!intAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an integral pointer bitwidth");
|
|
return {};
|
|
}
|
|
ptr = intAttr.getInt();
|
|
} else if (attr.getName() == "indexBitWidth") {
|
|
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
|
|
if (!intAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an integral index bitwidth");
|
|
return {};
|
|
}
|
|
ind = intAttr.getInt();
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(), "unexpected key: ")
|
|
<< attr.getName().strref();
|
|
return {};
|
|
}
|
|
}
|
|
// Construct struct-like storage for attribute.
|
|
return parser.getChecked<SparseTensorEncodingAttr>(parser.getContext(), dlt,
|
|
map, ptr, ind);
|
|
}
|
|
|
|
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
|
|
// Print the struct-like storage in dictionary fashion.
|
|
printer << "<{ dimLevelType = [ ";
|
|
for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
|
|
switch (getDimLevelType()[i]) {
|
|
case DimLevelType::Dense:
|
|
printer << "\"dense\"";
|
|
break;
|
|
case DimLevelType::Compressed:
|
|
printer << "\"compressed\"";
|
|
break;
|
|
case DimLevelType::Singleton:
|
|
printer << "\"singleton\"";
|
|
break;
|
|
}
|
|
if (i != e - 1)
|
|
printer << ", ";
|
|
}
|
|
printer << " ]";
|
|
if (getDimOrdering())
|
|
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
|
|
printer << ", pointerBitWidth = " << getPointerBitWidth()
|
|
<< ", indexBitWidth = " << getIndexBitWidth() << " }>";
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verify(
|
|
function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
|
|
unsigned pointerBitWidth, unsigned indexBitWidth) {
|
|
if (!acceptBitWidth(pointerBitWidth))
|
|
return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
|
|
if (!acceptBitWidth(indexBitWidth))
|
|
return emitError() << "unexpected index bitwidth: " << indexBitWidth;
|
|
if (dimOrdering) {
|
|
if (!dimOrdering.isPermutation())
|
|
return emitError()
|
|
<< "expected a permutation affine map for dimension ordering";
|
|
if (dimOrdering.getNumResults() != dimLevelType.size())
|
|
return emitError() << "unexpected mismatch in ordering and dimension "
|
|
"level types size";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
function_ref<InFlightDiagnostic()> emitError) const {
|
|
// Check structural integrity.
|
|
if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
|
|
getPointerBitWidth(), getIndexBitWidth())))
|
|
return failure();
|
|
// Check integrity with tensor type specifics. Dimension ordering is optional,
|
|
// but we always should have dimension level types for the full rank.
|
|
unsigned size = shape.size();
|
|
if (size == 0)
|
|
return emitError() << "expected non-scalar sparse tensor";
|
|
if (getDimOrdering() && getDimOrdering().getNumResults() != size)
|
|
return emitError() << "expected an affine map of size " << size
|
|
<< " for dimension ordering";
|
|
if (getDimLevelType().size() != size)
|
|
return emitError() << "expected an array of size " << size
|
|
<< " for dimension level types";
|
|
return success();
|
|
}
|
|
|
|
SparseTensorEncodingAttr
|
|
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
|
|
if (auto ttp = type.dyn_cast<RankedTensorType>())
|
|
return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult isInBounds(Value dim, Value tensor) {
|
|
IntegerAttr constantAttr;
|
|
if (matchPattern(dim, m_Constant(&constantAttr))) {
|
|
unsigned d = constantAttr.getInt();
|
|
if (d >= tensor.getType().cast<RankedTensorType>().getRank())
|
|
return failure();
|
|
}
|
|
return success(); // in bounds, or symbolic
|
|
}
|
|
|
|
static LogicalResult isMatchingWidth(Value result, unsigned width) {
|
|
Type etp = result.getType().cast<MemRefType>().getElementType();
|
|
if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
|
|
return success();
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult NewOp::verify() {
|
|
if (!getSparseTensorEncoding(result().getType()))
|
|
return emitError("expected a sparse tensor result");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult InitOp::verify() {
|
|
if (!getSparseTensorEncoding(result().getType()))
|
|
return emitError("expected a sparse tensor result");
|
|
RankedTensorType ttp = getType().cast<RankedTensorType>();
|
|
unsigned rank = ttp.getRank();
|
|
if (rank != sizes().size())
|
|
return emitError("unexpected mismatch between tensor rank and sizes: ")
|
|
<< rank << " vs. " << sizes().size();
|
|
auto shape = ttp.getShape();
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
if (shape[i] == ShapedType::kDynamicSize)
|
|
continue;
|
|
IntegerAttr constantAttr;
|
|
if (!matchPattern(sizes()[i], m_Constant(&constantAttr)) ||
|
|
constantAttr.getInt() != shape[i]) {
|
|
return emitError("unexpected mismatch with static dimension size ")
|
|
<< shape[i];
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ConvertOp::verify() {
|
|
if (auto tp1 = source().getType().dyn_cast<RankedTensorType>()) {
|
|
if (auto tp2 = dest().getType().dyn_cast<RankedTensorType>()) {
|
|
if (tp1.getRank() != tp2.getRank())
|
|
return emitError("unexpected conversion mismatch in rank");
|
|
auto shape1 = tp1.getShape();
|
|
auto shape2 = tp2.getShape();
|
|
// Accept size matches between the source and the destination type
|
|
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
|
|
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
|
|
for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++)
|
|
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamicSize)
|
|
return emitError("unexpected conversion mismatch in dimension ") << d;
|
|
return success();
|
|
}
|
|
}
|
|
return emitError("unexpected type in convert");
|
|
}
|
|
|
|
OpFoldResult ConvertOp::fold(ArrayRef<Attribute> operands) {
|
|
if (getType() == source().getType())
|
|
return source();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult ToPointersOp::verify() {
|
|
if (auto e = getSparseTensorEncoding(tensor().getType())) {
|
|
if (failed(isInBounds(dim(), tensor())))
|
|
return emitError("requested pointers dimension out of bounds");
|
|
if (failed(isMatchingWidth(result(), e.getPointerBitWidth())))
|
|
return emitError("unexpected type for pointers");
|
|
return success();
|
|
}
|
|
return emitError("expected a sparse tensor to get pointers");
|
|
}
|
|
|
|
LogicalResult ToIndicesOp::verify() {
|
|
if (auto e = getSparseTensorEncoding(tensor().getType())) {
|
|
if (failed(isInBounds(dim(), tensor())))
|
|
return emitError("requested indices dimension out of bounds");
|
|
if (failed(isMatchingWidth(result(), e.getIndexBitWidth())))
|
|
return emitError("unexpected type for indices");
|
|
return success();
|
|
}
|
|
return emitError("expected a sparse tensor to get indices");
|
|
}
|
|
|
|
LogicalResult ToValuesOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor to get values");
|
|
RankedTensorType ttp = tensor().getType().cast<RankedTensorType>();
|
|
MemRefType mtp = result().getType().cast<MemRefType>();
|
|
if (ttp.getElementType() != mtp.getElementType())
|
|
return emitError("unexpected mismatch in element types");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Management Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult LexInsertOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor for insertion");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ExpandOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor for expansion");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult CompressOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor for compression");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult LoadOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor to materialize");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ReleaseOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor to release");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OutOp::verify() {
|
|
if (!getSparseTensorEncoding(tensor().getType()))
|
|
return emitError("expected a sparse tensor for output");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Linalg.Generic Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class T>
|
|
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
|
|
const char *regionName,
|
|
TypeRange inputTypes, Type outputType) {
|
|
unsigned numArgs = region.getNumArguments();
|
|
unsigned expectedNum = inputTypes.size();
|
|
if (numArgs != expectedNum)
|
|
return op->emitError() << regionName << " region must have exactly "
|
|
<< expectedNum << " arguments";
|
|
|
|
for (unsigned i = 0; i < numArgs; i++) {
|
|
Type typ = region.getArgument(i).getType();
|
|
if (typ != inputTypes[i])
|
|
return op->emitError() << regionName << " region argument " << (i + 1)
|
|
<< " type mismatch";
|
|
}
|
|
Operation *term = region.front().getTerminator();
|
|
YieldOp yield = dyn_cast<YieldOp>(term);
|
|
if (!yield)
|
|
return op->emitError() << regionName
|
|
<< " region must end with sparse_tensor.yield";
|
|
if (yield.getOperand().getType() != outputType)
|
|
return op->emitError() << regionName << " region yield type mismatch";
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult BinaryOp::verify() {
|
|
NamedAttrList attrs = (*this)->getAttrs();
|
|
Type leftType = x().getType();
|
|
Type rightType = y().getType();
|
|
Type outputType = output().getType();
|
|
Region &overlap = overlapRegion();
|
|
Region &left = leftRegion();
|
|
Region &right = rightRegion();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
LogicalResult regionResult = success();
|
|
if (!overlap.empty()) {
|
|
regionResult = verifyNumBlockArgs(
|
|
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
if (!left.empty()) {
|
|
regionResult =
|
|
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
} else if (left_identity()) {
|
|
if (leftType != outputType)
|
|
return emitError("left=identity requires first argument to have the same "
|
|
"type as the output");
|
|
}
|
|
if (!right.empty()) {
|
|
regionResult = verifyNumBlockArgs(this, right, "right",
|
|
TypeRange{rightType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
} else if (right_identity()) {
|
|
if (rightType != outputType)
|
|
return emitError("right=identity requires second argument to have the "
|
|
"same type as the output");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult UnaryOp::verify() {
|
|
Type inputType = x().getType();
|
|
Type outputType = output().getType();
|
|
LogicalResult regionResult = success();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
Region &present = presentRegion();
|
|
if (!present.empty()) {
|
|
regionResult = verifyNumBlockArgs(this, present, "present",
|
|
TypeRange{inputType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
Region &absent = absentRegion();
|
|
if (!absent.empty()) {
|
|
regionResult =
|
|
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult YieldOp::verify() {
|
|
// Check for compatible parent.
|
|
auto *parentOp = (*this)->getParentOp();
|
|
if (auto binaryOp = dyn_cast<BinaryOp>(parentOp))
|
|
return success();
|
|
if (auto unaryOp = dyn_cast<UnaryOp>(parentOp))
|
|
return success();
|
|
|
|
return emitOpError("expected parent op to be sparse_tensor binary or unary");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SparseTensorDialect::initialize() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|