On Apple Silicon Macs, using a Darwin thread priority of PRIO_DARWIN_BG seems to map directly to the QoS class Background. With this priority, the thread is confined to efficiency cores only, which makes background indexing take forever. Introduce a new ThreadPriority "Low" that sits in the middle between Background and Default, and maps to QoS class "Utility" on Mac. Make this new priority the default for indexing. This makes the thread run on all cores, but still lowers priority enough to keep the machine responsive, and not interfere with user-initiated actions. I didn't change the implementations for Windows and Linux; on these systems, both ThreadPriority::Background and ThreadPriority::Low map to the same thread priority. This could be changed as a followup (e.g. by using SCHED_BATCH for Low on Linux). See also https://github.com/clangd/clangd/issues/1119. Reviewed By: sammccall, dgoldman Differential Revision: https://reviews.llvm.org/D124715
317 lines
10 KiB
C++
317 lines
10 KiB
C++
//===- Windows/Threading.inc - Win32 Threading Implementation - -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides the Win32 specific implementation of Threading functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
|
|
#include "llvm/Support/Windows/WindowsSupport.h"
|
|
#include <process.h>
|
|
|
|
#include <bitset>
|
|
|
|
// Windows will at times define MemoryFence.
|
|
#ifdef MemoryFence
|
|
#undef MemoryFence
|
|
#endif
|
|
|
|
namespace llvm {
|
|
HANDLE
|
|
llvm_execute_on_thread_impl(unsigned(__stdcall *ThreadFunc)(void *), void *Arg,
|
|
llvm::Optional<unsigned> StackSizeInBytes) {
|
|
HANDLE hThread = (HANDLE)::_beginthreadex(
|
|
NULL, StackSizeInBytes.getValueOr(0), ThreadFunc, Arg, 0, NULL);
|
|
|
|
if (!hThread) {
|
|
ReportLastErrorFatal("_beginthreadex failed");
|
|
}
|
|
|
|
return hThread;
|
|
}
|
|
|
|
void llvm_thread_join_impl(HANDLE hThread) {
|
|
if (::WaitForSingleObject(hThread, INFINITE) == WAIT_FAILED) {
|
|
ReportLastErrorFatal("WaitForSingleObject failed");
|
|
}
|
|
}
|
|
|
|
void llvm_thread_detach_impl(HANDLE hThread) {
|
|
if (::CloseHandle(hThread) == FALSE) {
|
|
ReportLastErrorFatal("CloseHandle failed");
|
|
}
|
|
}
|
|
|
|
DWORD llvm_thread_get_id_impl(HANDLE hThread) {
|
|
return ::GetThreadId(hThread);
|
|
}
|
|
|
|
DWORD llvm_thread_get_current_id_impl() {
|
|
return ::GetCurrentThreadId();
|
|
}
|
|
|
|
} // namespace llvm
|
|
|
|
uint64_t llvm::get_threadid() {
|
|
return uint64_t(::GetCurrentThreadId());
|
|
}
|
|
|
|
uint32_t llvm::get_max_thread_name_length() { return 0; }
|
|
|
|
#if defined(_MSC_VER)
|
|
static void SetThreadName(DWORD Id, LPCSTR Name) {
|
|
constexpr DWORD MS_VC_EXCEPTION = 0x406D1388;
|
|
|
|
#pragma pack(push, 8)
|
|
struct THREADNAME_INFO {
|
|
DWORD dwType; // Must be 0x1000.
|
|
LPCSTR szName; // Pointer to thread name
|
|
DWORD dwThreadId; // Thread ID (-1 == current thread)
|
|
DWORD dwFlags; // Reserved. Do not use.
|
|
};
|
|
#pragma pack(pop)
|
|
|
|
THREADNAME_INFO info;
|
|
info.dwType = 0x1000;
|
|
info.szName = Name;
|
|
info.dwThreadId = Id;
|
|
info.dwFlags = 0;
|
|
|
|
__try {
|
|
::RaiseException(MS_VC_EXCEPTION, 0, sizeof(info) / sizeof(ULONG_PTR),
|
|
(ULONG_PTR *)&info);
|
|
}
|
|
__except (EXCEPTION_EXECUTE_HANDLER) {
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void llvm::set_thread_name(const Twine &Name) {
|
|
#if defined(_MSC_VER)
|
|
// Make sure the input is null terminated.
|
|
SmallString<64> Storage;
|
|
StringRef NameStr = Name.toNullTerminatedStringRef(Storage);
|
|
SetThreadName(::GetCurrentThreadId(), NameStr.data());
|
|
#endif
|
|
}
|
|
|
|
void llvm::get_thread_name(SmallVectorImpl<char> &Name) {
|
|
// "Name" is not an inherent property of a thread on Windows. In fact, when
|
|
// you "set" the name, you are only firing a one-time message to a debugger
|
|
// which it interprets as a program setting its threads' name. We may be
|
|
// able to get fancy by creating a TLS entry when someone calls
|
|
// set_thread_name so that subsequent calls to get_thread_name return this
|
|
// value.
|
|
Name.clear();
|
|
}
|
|
|
|
SetThreadPriorityResult llvm::set_thread_priority(ThreadPriority Priority) {
|
|
// https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
|
|
// Begin background processing mode. The system lowers the resource scheduling
|
|
// priorities of the thread so that it can perform background work without
|
|
// significantly affecting activity in the foreground.
|
|
// End background processing mode. The system restores the resource scheduling
|
|
// priorities of the thread as they were before the thread entered background
|
|
// processing mode.
|
|
//
|
|
// FIXME: consider THREAD_PRIORITY_BELOW_NORMAL for Low
|
|
return SetThreadPriority(GetCurrentThread(),
|
|
Priority != ThreadPriority::Default
|
|
? THREAD_MODE_BACKGROUND_BEGIN
|
|
: THREAD_MODE_BACKGROUND_END)
|
|
? SetThreadPriorityResult::SUCCESS
|
|
: SetThreadPriorityResult::FAILURE;
|
|
}
|
|
|
|
struct ProcessorGroup {
|
|
unsigned ID;
|
|
unsigned AllThreads;
|
|
unsigned UsableThreads;
|
|
unsigned ThreadsPerCore;
|
|
uint64_t Affinity;
|
|
|
|
unsigned useableCores() const {
|
|
return std::max(1U, UsableThreads / ThreadsPerCore);
|
|
}
|
|
};
|
|
|
|
template <typename F>
|
|
static bool IterateProcInfo(LOGICAL_PROCESSOR_RELATIONSHIP Relationship, F Fn) {
|
|
DWORD Len = 0;
|
|
BOOL R = ::GetLogicalProcessorInformationEx(Relationship, NULL, &Len);
|
|
if (R || GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
|
|
return false;
|
|
}
|
|
auto *Info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)calloc(1, Len);
|
|
R = ::GetLogicalProcessorInformationEx(Relationship, Info, &Len);
|
|
if (R) {
|
|
auto *End =
|
|
(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Info + Len);
|
|
for (auto *Curr = Info; Curr < End;
|
|
Curr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Curr +
|
|
Curr->Size)) {
|
|
if (Curr->Relationship != Relationship)
|
|
continue;
|
|
Fn(Curr);
|
|
}
|
|
}
|
|
free(Info);
|
|
return true;
|
|
}
|
|
|
|
static ArrayRef<ProcessorGroup> getProcessorGroups() {
|
|
auto computeGroups = []() {
|
|
SmallVector<ProcessorGroup, 4> Groups;
|
|
|
|
auto HandleGroup = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
|
|
GROUP_RELATIONSHIP &El = ProcInfo->Group;
|
|
for (unsigned J = 0; J < El.ActiveGroupCount; ++J) {
|
|
ProcessorGroup G;
|
|
G.ID = Groups.size();
|
|
G.AllThreads = El.GroupInfo[J].MaximumProcessorCount;
|
|
G.UsableThreads = El.GroupInfo[J].ActiveProcessorCount;
|
|
assert(G.UsableThreads <= 64);
|
|
G.Affinity = El.GroupInfo[J].ActiveProcessorMask;
|
|
Groups.push_back(G);
|
|
}
|
|
};
|
|
|
|
if (!IterateProcInfo(RelationGroup, HandleGroup))
|
|
return std::vector<ProcessorGroup>();
|
|
|
|
auto HandleProc = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
|
|
PROCESSOR_RELATIONSHIP &El = ProcInfo->Processor;
|
|
assert(El.GroupCount == 1);
|
|
unsigned NumHyperThreads = 1;
|
|
// If the flag is set, each core supports more than one hyper-thread.
|
|
if (El.Flags & LTP_PC_SMT)
|
|
NumHyperThreads = std::bitset<64>(El.GroupMask[0].Mask).count();
|
|
unsigned I = El.GroupMask[0].Group;
|
|
Groups[I].ThreadsPerCore = NumHyperThreads;
|
|
};
|
|
|
|
if (!IterateProcInfo(RelationProcessorCore, HandleProc))
|
|
return std::vector<ProcessorGroup>();
|
|
|
|
// If there's an affinity mask set, assume the user wants to constrain the
|
|
// current process to only a single CPU group. On Windows, it is not
|
|
// possible for affinity masks to cross CPU group boundaries.
|
|
DWORD_PTR ProcessAffinityMask = 0, SystemAffinityMask = 0;
|
|
if (::GetProcessAffinityMask(GetCurrentProcess(), &ProcessAffinityMask,
|
|
&SystemAffinityMask) &&
|
|
ProcessAffinityMask != SystemAffinityMask) {
|
|
// We don't expect more that 4 CPU groups on Windows (256 processors).
|
|
USHORT GroupCount = 4;
|
|
USHORT GroupArray[4]{};
|
|
if (::GetProcessGroupAffinity(GetCurrentProcess(), &GroupCount,
|
|
GroupArray)) {
|
|
assert(GroupCount == 1 &&
|
|
"On startup, a program is expected to be assigned only to "
|
|
"one processor group!");
|
|
unsigned CurrentGroupID = GroupArray[0];
|
|
ProcessorGroup NewG{Groups[CurrentGroupID]};
|
|
NewG.Affinity = ProcessAffinityMask;
|
|
NewG.UsableThreads = countPopulation(ProcessAffinityMask);
|
|
Groups.clear();
|
|
Groups.push_back(NewG);
|
|
}
|
|
}
|
|
|
|
return std::vector<ProcessorGroup>(Groups.begin(), Groups.end());
|
|
};
|
|
static auto Groups = computeGroups();
|
|
return ArrayRef<ProcessorGroup>(Groups);
|
|
}
|
|
|
|
template <typename R, typename UnaryPredicate>
|
|
static unsigned aggregate(R &&Range, UnaryPredicate P) {
|
|
unsigned I{};
|
|
for (const auto &It : Range)
|
|
I += P(It);
|
|
return I;
|
|
}
|
|
|
|
// for sys::getHostNumPhysicalCores
|
|
int computeHostNumPhysicalCores() {
|
|
static unsigned Cores =
|
|
aggregate(getProcessorGroups(), [](const ProcessorGroup &G) {
|
|
return G.UsableThreads / G.ThreadsPerCore;
|
|
});
|
|
return Cores;
|
|
}
|
|
|
|
int computeHostNumHardwareThreads() {
|
|
static unsigned Threads =
|
|
aggregate(getProcessorGroups(),
|
|
[](const ProcessorGroup &G) { return G.UsableThreads; });
|
|
return Threads;
|
|
}
|
|
|
|
// Finds the proper CPU socket where a thread number should go. Returns 'None'
|
|
// if the thread shall remain on the actual CPU socket.
|
|
Optional<unsigned>
|
|
llvm::ThreadPoolStrategy::compute_cpu_socket(unsigned ThreadPoolNum) const {
|
|
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
|
|
// Only one CPU socket in the system or process affinity was set, no need to
|
|
// move the thread(s) to another CPU socket.
|
|
if (Groups.size() <= 1)
|
|
return None;
|
|
|
|
// We ask for less threads than there are hardware threads per CPU socket, no
|
|
// need to dispatch threads to other CPU sockets.
|
|
unsigned MaxThreadsPerSocket =
|
|
UseHyperThreads ? Groups[0].UsableThreads : Groups[0].useableCores();
|
|
if (compute_thread_count() <= MaxThreadsPerSocket)
|
|
return None;
|
|
|
|
assert(ThreadPoolNum < compute_thread_count() &&
|
|
"The thread index is not within thread strategy's range!");
|
|
|
|
// Assumes the same number of hardware threads per CPU socket.
|
|
return (ThreadPoolNum * Groups.size()) / compute_thread_count();
|
|
}
|
|
|
|
// Assign the current thread to a more appropriate CPU socket or CPU group
|
|
void llvm::ThreadPoolStrategy::apply_thread_strategy(
|
|
unsigned ThreadPoolNum) const {
|
|
Optional<unsigned> Socket = compute_cpu_socket(ThreadPoolNum);
|
|
if (!Socket)
|
|
return;
|
|
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
|
|
GROUP_AFFINITY Affinity{};
|
|
Affinity.Group = Groups[*Socket].ID;
|
|
Affinity.Mask = Groups[*Socket].Affinity;
|
|
SetThreadGroupAffinity(GetCurrentThread(), &Affinity, nullptr);
|
|
}
|
|
|
|
llvm::BitVector llvm::get_thread_affinity_mask() {
|
|
GROUP_AFFINITY Affinity{};
|
|
GetThreadGroupAffinity(GetCurrentThread(), &Affinity);
|
|
|
|
static unsigned All =
|
|
aggregate(getProcessorGroups(),
|
|
[](const ProcessorGroup &G) { return G.AllThreads; });
|
|
|
|
unsigned StartOffset =
|
|
aggregate(getProcessorGroups(), [&](const ProcessorGroup &G) {
|
|
return G.ID < Affinity.Group ? G.AllThreads : 0;
|
|
});
|
|
|
|
llvm::BitVector V;
|
|
V.resize(All);
|
|
for (unsigned I = 0; I < sizeof(KAFFINITY) * 8; ++I) {
|
|
if ((Affinity.Mask >> I) & 1)
|
|
V.set(StartOffset + I);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
unsigned llvm::get_cpus() { return getProcessorGroups().size(); }
|