Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/AllocTensorElimination.cpp
Matthias Springer ffdbecccaf [mlir][bufferization] Add bufferization.alloc_tensor op
This change adds a new op `alloc_tensor` to the bufferization dialect. During bufferization, this op is always lowered to a buffer allocation (unless it is "eliminated" by a pre-processing pass). It is useful to have such an op in tensor land, because it allows users to model tensor SSA use-def chains (which drive bufferization decisions) and because tensor SSA use-def chains can be analyzed by One-Shot Bufferize, while memref values cannot.

This change also replaces all uses of linalg.init_tensor in bufferization-related code with bufferization.alloc_tensor.

linalg.init_tensor and bufferization.alloc_tensor are similar, but the purpose of the former one is just to carry a shape. It does not indicate a memory allocation.

linalg.init_tensor is not suitable for modelling SSA use-def chains for bufferization purposes, because linalg.init_tensor is marked as not having side effects (in contrast to alloc_tensor). As such, it is legal to move linalg.init_tensor ops around/CSE them/etc. This is not desirable for alloc_tensor; it represents an explicit buffer allocation while still in tensor land and such allocations should not suddenly disappear or get moved around when running the canonicalizer/CSE/etc.

BEGIN_PUBLIC
No public commit message needed for presubmit.
END_PUBLIC

Differential Revision: https://reviews.llvm.org/D126003
2022-05-21 02:47:32 +02:00

273 lines
11 KiB
C++

//===- AllocTensorElimination.cpp - alloc_tensor op elimination -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/AllocTensorElimination.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
using namespace mlir::bufferization;
/// Return true if all `neededValues` are in scope at the given
/// `insertionPoint`.
static bool
neededValuesDominateInsertionPoint(const DominanceInfo &domInfo,
Operation *insertionPoint,
const SmallVector<Value> &neededValues) {
for (Value val : neededValues) {
if (auto bbArg = val.dyn_cast<BlockArgument>()) {
Block *owner = bbArg.getOwner();
if (!owner->findAncestorOpInBlock(*insertionPoint))
return false;
} else {
auto opResult = val.cast<OpResult>();
if (!domInfo.dominates(opResult.getOwner(), insertionPoint))
return false;
}
}
return true;
}
/// Return true if the given `insertionPoint` dominates all uses of
/// `allocTensorOp`.
static bool insertionPointDominatesUses(const DominanceInfo &domInfo,
Operation *insertionPoint,
Operation *allocTensorOp) {
for (Operation *user : allocTensorOp->getUsers())
if (!domInfo.dominates(insertionPoint, user))
return false;
return true;
}
/// Find a valid insertion point for a replacement of `allocTensorOp`, assuming
/// that the replacement may use any value from `neededValues`.
static Operation *
findValidInsertionPoint(Operation *allocTensorOp,
const SmallVector<Value> &neededValues) {
DominanceInfo domInfo;
// Gather all possible insertion points: the location of `allocTensorOp` and
// right after the definition of each value in `neededValues`.
SmallVector<Operation *> insertionPointCandidates;
insertionPointCandidates.push_back(allocTensorOp);
for (Value val : neededValues) {
// Note: The anchor op is using all of `neededValues`, so:
// * in case of a block argument: There must be at least one op in the block
// (the anchor op or one of its parents).
// * in case of an OpResult: There must be at least one op right after the
// defining op (the anchor op or one of its
// parents).
if (auto bbArg = val.dyn_cast<BlockArgument>()) {
insertionPointCandidates.push_back(
&bbArg.getOwner()->getOperations().front());
} else {
insertionPointCandidates.push_back(val.getDefiningOp()->getNextNode());
}
}
// Select first matching insertion point.
for (Operation *insertionPoint : insertionPointCandidates) {
// Check if all needed values are in scope.
if (!neededValuesDominateInsertionPoint(domInfo, insertionPoint,
neededValues))
continue;
// Check if the insertion point is before all uses.
if (!insertionPointDominatesUses(domInfo, insertionPoint, allocTensorOp))
continue;
return insertionPoint;
}
// No suitable insertion point was found.
return nullptr;
}
/// Try to eliminate AllocTensorOps inside `op`. An AllocTensorOp is replaced
/// with the result of `rewriteFunc` if it is anchored on a matching
/// OpOperand. "Anchored" means that there is a path on the reverse SSA use-def
/// chain, starting from the OpOperand and always following the aliasing
/// OpOperand, that eventually ends at a single AllocTensorOp.
LogicalResult mlir::bufferization::eliminateAllocTensors(
RewriterBase &rewriter, Operation *op, AnalysisState &state,
AnchorMatchFn anchorMatchFunc, RewriteFn rewriteFunc) {
OpBuilder::InsertionGuard g(rewriter);
WalkResult status = op->walk([&](Operation *op) {
for (OpOperand &operand : op->getOpOperands()) {
// Skip operands that do not bufferize inplace.
if (!state.isInPlace(operand))
continue;
// All values that are needed to create the replacement op.
SmallVector<Value> neededValues;
// Is this a matching OpOperand?
if (!anchorMatchFunc(operand, neededValues))
continue;
SetVector<Value> maybeAllocTensor =
state.findValueInReverseUseDefChain(operand.get(), [&](Value val) {
// Continue traversal until this function returns true.
OpResult opResult = val.dyn_cast<OpResult>();
if (!opResult)
return true;
SmallVector<OpOperand *> opOperands =
state.getAliasingOpOperand(opResult);
if (!llvm::all_of(opOperands, [&](OpOperand *operand) {
return state.isInPlace(*operand);
}))
return true;
// Only equivalent tensors are supported at the moment.
// TODO: Support cases such as extract_slice(alloc_tensor)
return !llvm::all_of(opOperands, [&](OpOperand *operand) {
return state.areEquivalentBufferizedValues(operand->get(),
opResult);
});
});
// Replace only if the reverse use-def chain ends at exactly one
// AllocTensorOp.
if (maybeAllocTensor.size() != 1 ||
!maybeAllocTensor.front().getDefiningOp<AllocTensorOp>())
return WalkResult::skip();
Value allocTensor = maybeAllocTensor.front();
// Find a suitable insertion point.
Operation *insertionPoint =
findValidInsertionPoint(allocTensor.getDefiningOp(), neededValues);
if (!insertionPoint)
continue;
// Create a replacement for the AllocTensorOp.
rewriter.setInsertionPoint(insertionPoint);
Value replacement = rewriteFunc(rewriter, allocTensor.getLoc(), operand);
if (!replacement)
continue;
// Replace the AllocTensorOp.
rewriter.replaceOp(allocTensor.getDefiningOp(), replacement);
}
// Advance to the next operation.
return WalkResult::advance();
});
return failure(status.wasInterrupted());
}
/// Try to eliminate AllocTensorOps inside `op`. An AllocTensorOp can be
/// eliminated if it is eventually inserted into another tensor (and some other
/// conditions are met).
///
/// E.g.:
/// %0 = linalg.alloc_tensor
/// %1 = linalg.fill(%cst, %0) {inplace = [true]}
/// %2 = tensor.insert_slice %1 into %t[10][20][1]
///
/// AllocTensorOp elimination will try to fill %t inplace instead of filling a
/// new allocation %0 and inserting it into %t. This is done by replacing the
/// AllocTensorOp with:
///
/// %0 = tensor.extract_slice %t[10][20][1]
///
/// The analysis looks for matching ExtractSliceOp/InsertSliceOp pairs and lets
/// those bufferize inplace in the absence of other conflicts.
///
/// Starting from an InsertSliceOp, an AllocTensorOp at the end of the insert
/// source's reverse use-def chain is eliminated if:
/// * On the reverse use-def chain path from the InsertSliceOp to the
/// AllocTensorOp, all ops were decided to bufferize inplace and the buffer
/// relation is "equivalent" (TODO: can be relaxed if needed).
/// * The reverse use-def chain has exactly one end, which is the AllocTensorOp.
LogicalResult
mlir::bufferization::insertSliceAnchoredAllocTensorEliminationStep(
RewriterBase &rewriter, Operation *op, AnalysisState &state) {
return eliminateAllocTensors(
rewriter, op, state,
/*anchorMatchFunc=*/
[&](OpOperand &operand, SmallVector<Value> &neededValues) {
auto insertSliceOp =
dyn_cast<tensor::InsertSliceOp>(operand.getOwner());
if (!insertSliceOp)
return false;
if (&operand != &insertSliceOp->getOpOperand(0) /*source*/)
return false;
// Collect all values that are needed to construct the replacement op.
neededValues.append(insertSliceOp.offsets().begin(),
insertSliceOp.offsets().end());
neededValues.append(insertSliceOp.sizes().begin(),
insertSliceOp.sizes().end());
neededValues.append(insertSliceOp.strides().begin(),
insertSliceOp.strides().end());
neededValues.push_back(insertSliceOp.dest());
return true;
},
/*rewriteFunc=*/
[](OpBuilder &b, Location loc, OpOperand &operand) {
auto insertOp = cast<tensor::InsertSliceOp>(operand.getOwner());
// Expand offsets, sizes and strides to the full rank to handle the
// rank-reducing case.
SmallVector<OpFoldResult> mixedOffsets = insertOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertOp.getMixedStrides();
OffsetSizeAndStrideOpInterface::expandToRank(
insertOp.dest(), mixedOffsets, mixedSizes, mixedStrides,
[&](Value target, int64_t dim) -> OpFoldResult {
auto shapedType = target.getType().cast<ShapedType>();
if (shapedType.isDynamicDim(dim))
return b.create<tensor::DimOp>(loc, target, dim).result();
return b.getIndexAttr(shapedType.getDimSize(dim));
});
auto t = tensor::ExtractSliceOp::inferRankReducedResultType(
insertOp.getSourceType().getRank(),
insertOp.dest().getType().cast<RankedTensorType>(), mixedOffsets,
mixedSizes, mixedStrides);
auto extractOp = b.create<tensor::ExtractSliceOp>(
loc, t, insertOp.dest(), mixedOffsets, mixedSizes, mixedStrides);
return extractOp.result();
});
}
namespace {
struct AllocTensorElimination
: public AllocTensorEliminationBase<AllocTensorElimination> {
AllocTensorElimination() = default;
void runOnOperation() override;
void getDependentDialects(DialectRegistry &registry) const override {
registry
.insert<bufferization::BufferizationDialect, tensor::TensorDialect>();
}
};
} // namespace
void AllocTensorElimination::runOnOperation() {
Operation *op = getOperation();
OneShotBufferizationOptions options;
OneShotAnalysisState state(op, options);
if (failed(analyzeOp(op, state))) {
signalPassFailure();
return;
}
IRRewriter rewriter(op->getContext());
if (failed(bufferization::insertSliceAnchoredAllocTensorEliminationStep(
rewriter, op, state)))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::bufferization::createAllocTensorEliminationPass() {
return std::make_unique<AllocTensorElimination>();
}