Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir
Matthias Springer 6232a8f3d6 [mlir][sparse][NFC] Switch InitOp to bufferization::AllocTensorOp
Now that we have an AllocTensorOp (previously InitTensorOp) in the bufferization dialect, the InitOp in the sparse dialect is no longer needed.

Differential Revision: https://reviews.llvm.org/D126180
2022-06-02 00:03:52 +02:00

95 lines
3.2 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
!Filename = !llvm.ptr<i8>
#DenseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "dense" ],
dimOrdering = affine_map<(i,j) -> (i,j)>
}>
#SparseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
dimOrdering = affine_map<(i,j) -> (i,j)>
}>
#trait_assign = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j)"
}
//
// Integration test that demonstrates assigning a sparse tensor
// to an all-dense annotated "sparse" tensor, which effectively
// result in inserting the nonzero elements into a linearized array.
//
// Note that there is a subtle difference between a non-annotated
// tensor and an all-dense annotated tensor. Both tensors are assumed
// dense, but the former remains an n-dimensional memref whereas the
// latter is linearized into a one-dimensional memref that is further
// lowered into a storage scheme that is backed by the runtime support
// library.
module {
//
// A kernel that assigns elements from A to X.
//
func.func @dense_output(%arga: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64, #DenseMatrix> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #SparseMatrix>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #SparseMatrix>
%init = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #DenseMatrix>
%0 = linalg.generic #trait_assign
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
outs(%init: tensor<?x?xf64, #DenseMatrix>) {
^bb(%a: f64, %x: f64):
linalg.yield %a : f64
} -> tensor<?x?xf64, #DenseMatrix>
return %0 : tensor<?x?xf64, #DenseMatrix>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the kernel.
//
func.func @entry() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName
: !Filename to tensor<?x?xf64, #SparseMatrix>
// Call the kernel.
%0 = call @dense_output(%a)
: (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64, #DenseMatrix>
//
// Print the linearized 5x5 result for verification.
//
// CHECK: ( 1, 0, 0, 1.4, 0, 0, 2, 0, 0, 2.5, 0, 0, 3, 0, 0, 4.1, 0, 0, 4, 0, 0, 5.2, 0, 0, 5 )
//
%m = sparse_tensor.values %0
: tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
%v = vector.load %m[%c0] : memref<?xf64>, vector<25xf64>
vector.print %v : vector<25xf64>
// Release the resources.
sparse_tensor.release %a : tensor<?x?xf64, #SparseMatrix>
sparse_tensor.release %0 : tensor<?x?xf64, #DenseMatrix>
return
}
}