Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir
River Riddle a6cef03f66 [mlir] Remove the type keyword from type alias definitions
This was carry over from LLVM IR where the alias definition can
be ambiguous, but MLIR type aliases have no such problems.
Having the `type` keyword is superfluous and doesn't add anything.
This commit drops it, which also nicely aligns with the syntax for
attribute aliases (which doesn't have a keyword).

Differential Revision: https://reviews.llvm.org/D125501
2022-05-16 13:54:02 -07:00

91 lines
2.8 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with SIMDization as well. This should not change the outcome.
//
// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=2" | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
!Filename = !llvm.ptr<i8>
#SparseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed" ]
}>
#trait_sum_reduce = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> ()> // x (out)
],
iterator_types = ["reduction", "reduction"],
doc = "x += A(i,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that sum-reduces a matrix to a single scalar.
//
func.func @kernel_sum_reduce(%arga: tensor<?x?xf64, #SparseMatrix>,
%argx: tensor<f64> {linalg.inplaceable = true}) -> tensor<f64> {
%0 = linalg.generic #trait_sum_reduce
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
outs(%argx: tensor<f64>) {
^bb(%a: f64, %x: f64):
%0 = arith.addf %x, %a : f64
linalg.yield %0 : f64
} -> tensor<f64>
return %0 : tensor<f64>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @entry() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
// Setup memory for a single reduction scalar,
// initialized to zero.
%xdata = memref.alloc() : memref<f64>
memref.store %d0, %xdata[] : memref<f64>
%x = bufferization.to_tensor %xdata : memref<f64>
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #SparseMatrix>
// Call the kernel.
%0 = call @kernel_sum_reduce(%a, %x)
: (tensor<?x?xf64, #SparseMatrix>, tensor<f64>) -> tensor<f64>
// Print the result for verification.
//
// CHECK: 30.2
//
%m = bufferization.to_memref %0 : memref<f64>
%v = memref.load %m[] : memref<f64>
vector.print %v : f64
// Release the resources.
memref.dealloc %xdata : memref<f64>
sparse_tensor.release %a : tensor<?x?xf64, #SparseMatrix>
return
}
}