Now that we have an AllocTensorOp (previously InitTensorOp) in the bufferization dialect, the InitOp in the sparse dialect is no longer needed. Differential Revision: https://reviews.llvm.org/D126180
92 lines
2.7 KiB
MLIR
92 lines
2.7 KiB
MLIR
// RUN: mlir-opt %s --sparse-compiler | \
|
|
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
#DCSR = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ]
|
|
}>
|
|
|
|
#DCSC = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (j,i)>
|
|
}>
|
|
|
|
#transpose_trait = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (j,i)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(j,i)"
|
|
}
|
|
|
|
module {
|
|
|
|
//
|
|
// Transposing a sparse row-wise matrix into another sparse row-wise
|
|
// matrix would fail direct codegen, since it introduces a cycle in
|
|
// the iteration graph. This can be avoided by converting the incoming
|
|
// matrix into a sparse column-wise matrix first.
|
|
//
|
|
func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> {
|
|
%t = sparse_tensor.convert %arga : tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC>
|
|
|
|
%i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR>
|
|
|
|
%0 = linalg.generic #transpose_trait
|
|
ins(%t: tensor<3x4xf64, #DCSC>)
|
|
outs(%i: tensor<4x3xf64, #DCSR>) {
|
|
^bb(%a: f64, %x: f64):
|
|
linalg.yield %a : f64
|
|
} -> tensor<4x3xf64, #DCSR>
|
|
|
|
sparse_tensor.release %t : tensor<3x4xf64, #DCSC>
|
|
|
|
return %0 : tensor<4x3xf64, #DCSR>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c4 = arith.constant 4 : index
|
|
%du = arith.constant 0.0 : f64
|
|
|
|
// Setup input sparse matrix from compressed constant.
|
|
%d = arith.constant dense <[
|
|
[ 1.1, 1.2, 0.0, 1.4 ],
|
|
[ 0.0, 0.0, 0.0, 0.0 ],
|
|
[ 3.1, 0.0, 3.3, 3.4 ]
|
|
]> : tensor<3x4xf64>
|
|
%a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>
|
|
|
|
// Call the kernel.
|
|
%0 = call @sparse_transpose(%a) : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
|
|
|
|
//
|
|
// Verify result.
|
|
//
|
|
// CHECK: ( 1.1, 0, 3.1 )
|
|
// CHECK-NEXT: ( 1.2, 0, 0 )
|
|
// CHECK-NEXT: ( 0, 0, 3.3 )
|
|
// CHECK-NEXT: ( 1.4, 0, 3.4 )
|
|
//
|
|
%x = sparse_tensor.convert %0 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64>
|
|
%m = bufferization.to_memref %x : memref<4x3xf64>
|
|
scf.for %i = %c0 to %c4 step %c1 {
|
|
%v = vector.transfer_read %m[%i, %c0], %du: memref<4x3xf64>, vector<3xf64>
|
|
vector.print %v : vector<3xf64>
|
|
}
|
|
|
|
// Release resources.
|
|
sparse_tensor.release %a : tensor<3x4xf64, #DCSR>
|
|
sparse_tensor.release %0 : tensor<4x3xf64, #DCSR>
|
|
memref.dealloc %m : memref<4x3xf64>
|
|
|
|
return
|
|
}
|
|
}
|