Files
clang-p2996/clang/lib/StaticAnalyzer/Checkers/STLAlgorithmModeling.cpp
NagyDonat 06eedffe0d [analyzer] Use explicit call description mode in iterator checkers (#88913)
This commit explicitly specifies the matching mode (C library function,
any non-method function, or C++ method) for the `CallDescription`s
constructed in the iterator/container checkers.

This change won't cause major functional changes, but isn't NFC because
it ensures that e.g. call descriptions for a non-method function won't
accidentally match a method that has the same name.

Separate commits will perform (or have already performed) this change in
other checkers. My goal is to ensure that the call description mode is
always explicitly specified and eliminate (or strongly restrict) the
vague "may be either a method or a simple function" mode that's the
current default.

I'm handling the iterator checkers in this separate commit because
they're infamously complex; but I don't expect any trouble because this
transition doesn't interact with the "central" logic of iterator
handling.
2024-04-17 13:26:51 +02:00

203 lines
7.6 KiB
C++

//===-- STLAlgorithmModeling.cpp ----------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Models STL algorithms.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "Iterator.h"
using namespace clang;
using namespace ento;
using namespace iterator;
namespace {
class STLAlgorithmModeling : public Checker<eval::Call> {
bool evalFind(CheckerContext &C, const CallExpr *CE) const;
void Find(CheckerContext &C, const CallExpr *CE, unsigned paramNum) const;
using FnCheck = bool (STLAlgorithmModeling::*)(CheckerContext &,
const CallExpr *) const;
const CallDescriptionMap<FnCheck> Callbacks = {
{{CDM::SimpleFunc, {"std", "find"}, 3}, &STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find"}, 4}, &STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if_not"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if_not"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "lower_bound"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "lower_bound"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "upper_bound"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "upper_bound"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 6},
&STLAlgorithmModeling::evalFind},
};
public:
STLAlgorithmModeling() = default;
bool AggressiveStdFindModeling = false;
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
}; //
bool STLAlgorithmModeling::evalCall(const CallEvent &Call,
CheckerContext &C) const {
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return false;
const FnCheck *Handler = Callbacks.lookup(Call);
if (!Handler)
return false;
return (this->**Handler)(C, CE);
}
bool STLAlgorithmModeling::evalFind(CheckerContext &C,
const CallExpr *CE) const {
// std::find()-like functions either take their primary range in the first
// two parameters, or if the first parameter is "execution policy" then in
// the second and third. This means that the second parameter must always be
// an iterator.
if (!isIteratorType(CE->getArg(1)->getType()))
return false;
// If no "execution policy" parameter is used then the first argument is the
// beginning of the range.
if (isIteratorType(CE->getArg(0)->getType())) {
Find(C, CE, 0);
return true;
}
// If "execution policy" parameter is used then the second argument is the
// beginning of the range.
if (isIteratorType(CE->getArg(2)->getType())) {
Find(C, CE, 1);
return true;
}
return false;
}
void STLAlgorithmModeling::Find(CheckerContext &C, const CallExpr *CE,
unsigned paramNum) const {
auto State = C.getState();
auto &SVB = C.getSValBuilder();
const auto *LCtx = C.getLocationContext();
SVal RetVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
SVal Param = State->getSVal(CE->getArg(paramNum), LCtx);
auto StateFound = State->BindExpr(CE, LCtx, RetVal);
// If we have an iterator position for the range-begin argument then we can
// assume that in case of successful search the position of the found element
// is not ahead of it.
// FIXME: Reverse iterators
const auto *Pos = getIteratorPosition(State, Param);
if (Pos) {
StateFound = createIteratorPosition(StateFound, RetVal, Pos->getContainer(),
CE, LCtx, C.blockCount());
const auto *NewPos = getIteratorPosition(StateFound, RetVal);
assert(NewPos && "Failed to create new iterator position.");
SVal GreaterOrEqual = SVB.evalBinOp(StateFound, BO_GE,
nonloc::SymbolVal(NewPos->getOffset()),
nonloc::SymbolVal(Pos->getOffset()),
SVB.getConditionType());
assert(isa<DefinedSVal>(GreaterOrEqual) &&
"Symbol comparison must be a `DefinedSVal`");
StateFound = StateFound->assume(GreaterOrEqual.castAs<DefinedSVal>(), true);
}
Param = State->getSVal(CE->getArg(paramNum + 1), LCtx);
// If we have an iterator position for the range-end argument then we can
// assume that in case of successful search the position of the found element
// is ahead of it.
// FIXME: Reverse iterators
Pos = getIteratorPosition(State, Param);
if (Pos) {
StateFound = createIteratorPosition(StateFound, RetVal, Pos->getContainer(),
CE, LCtx, C.blockCount());
const auto *NewPos = getIteratorPosition(StateFound, RetVal);
assert(NewPos && "Failed to create new iterator position.");
SVal Less = SVB.evalBinOp(StateFound, BO_LT,
nonloc::SymbolVal(NewPos->getOffset()),
nonloc::SymbolVal(Pos->getOffset()),
SVB.getConditionType());
assert(isa<DefinedSVal>(Less) &&
"Symbol comparison must be a `DefinedSVal`");
StateFound = StateFound->assume(Less.castAs<DefinedSVal>(), true);
}
C.addTransition(StateFound);
if (AggressiveStdFindModeling) {
auto StateNotFound = State->BindExpr(CE, LCtx, Param);
C.addTransition(StateNotFound);
}
}
} // namespace
void ento::registerSTLAlgorithmModeling(CheckerManager &Mgr) {
auto *Checker = Mgr.registerChecker<STLAlgorithmModeling>();
Checker->AggressiveStdFindModeling =
Mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker,
"AggressiveStdFindModeling");
}
bool ento::shouldRegisterSTLAlgorithmModeling(const CheckerManager &mgr) {
return true;
}