Files
clang-p2996/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp
z1nke 684c26c89b [analyzer] Remove redundant "returned to caller" suffix for compound literal in StackAddressEscape
This patch simplifies the diagnostic message in the core.StackAddrEscape
for stack memory associated with compound literals by removing the
redundant "returned to caller" suffix.
Example: https://godbolt.org/z/KxM67vr7c

```c
// clang --analyze -Xanalyzer -analyzer-checker=core.StackAddressEscape
void* compound_literal() {
  return &(unsigned short){((unsigned short)0x22EF)};
}
```

warning: Address of stack memory associated with a compound literal
declared on line 2 **returned to caller returned to caller**
[core.StackAddressEscape]
2024-10-23 10:46:36 +02:00

555 lines
21 KiB
C++

//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines stack address leak checker, which checks if an invalid
// stack address is stored into a global or heap location. See CERT DCL30-C.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace {
class StackAddrEscapeChecker
: public Checker<check::PreCall, check::PreStmt<ReturnStmt>,
check::EndFunction> {
mutable IdentifierInfo *dispatch_semaphore_tII = nullptr;
mutable std::unique_ptr<BugType> BT_stackleak;
mutable std::unique_ptr<BugType> BT_returnstack;
mutable std::unique_ptr<BugType> BT_capturedstackasync;
mutable std::unique_ptr<BugType> BT_capturedstackret;
public:
enum CheckKind {
CK_StackAddrEscapeChecker,
CK_StackAddrAsyncEscapeChecker,
CK_NumCheckKinds
};
bool ChecksEnabled[CK_NumCheckKinds] = {false};
CheckerNameRef CheckNames[CK_NumCheckKinds];
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const;
private:
void checkReturnedBlockCaptures(const BlockDataRegion &B,
CheckerContext &C) const;
void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B,
CheckerContext &C) const;
void EmitStackError(CheckerContext &C, const MemRegion *R,
const Expr *RetE) const;
bool isSemaphoreCaptured(const BlockDecl &B) const;
static SourceRange genName(raw_ostream &os, const MemRegion *R,
ASTContext &Ctx);
static SmallVector<const MemRegion *, 4>
getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C);
static bool isNotInCurrentFrame(const MemRegion *R, CheckerContext &C);
};
} // namespace
SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R,
ASTContext &Ctx) {
// Get the base region, stripping away fields and elements.
R = R->getBaseRegion();
SourceManager &SM = Ctx.getSourceManager();
SourceRange range;
os << "Address of ";
// Check if the region is a compound literal.
if (const auto *CR = dyn_cast<CompoundLiteralRegion>(R)) {
const CompoundLiteralExpr *CL = CR->getLiteralExpr();
os << "stack memory associated with a compound literal "
"declared on line "
<< SM.getExpansionLineNumber(CL->getBeginLoc());
range = CL->getSourceRange();
} else if (const auto *AR = dyn_cast<AllocaRegion>(R)) {
const Expr *ARE = AR->getExpr();
SourceLocation L = ARE->getBeginLoc();
range = ARE->getSourceRange();
os << "stack memory allocated by call to alloca() on line "
<< SM.getExpansionLineNumber(L);
} else if (const auto *BR = dyn_cast<BlockDataRegion>(R)) {
const BlockDecl *BD = BR->getCodeRegion()->getDecl();
SourceLocation L = BD->getBeginLoc();
range = BD->getSourceRange();
os << "stack-allocated block declared on line "
<< SM.getExpansionLineNumber(L);
} else if (const auto *VR = dyn_cast<VarRegion>(R)) {
os << "stack memory associated with local variable '" << VR->getString()
<< '\'';
range = VR->getDecl()->getSourceRange();
} else if (const auto *LER = dyn_cast<CXXLifetimeExtendedObjectRegion>(R)) {
QualType Ty = LER->getValueType().getLocalUnqualifiedType();
os << "stack memory associated with temporary object of type '";
Ty.print(os, Ctx.getPrintingPolicy());
os << "' lifetime extended by local variable";
if (const IdentifierInfo *ID = LER->getExtendingDecl()->getIdentifier())
os << " '" << ID->getName() << '\'';
range = LER->getExpr()->getSourceRange();
} else if (const auto *TOR = dyn_cast<CXXTempObjectRegion>(R)) {
QualType Ty = TOR->getValueType().getLocalUnqualifiedType();
os << "stack memory associated with temporary object of type '";
Ty.print(os, Ctx.getPrintingPolicy());
os << "'";
range = TOR->getExpr()->getSourceRange();
} else {
llvm_unreachable("Invalid region in ReturnStackAddressChecker.");
}
return range;
}
bool StackAddrEscapeChecker::isNotInCurrentFrame(const MemRegion *R,
CheckerContext &C) {
const StackSpaceRegion *S = cast<StackSpaceRegion>(R->getMemorySpace());
return S->getStackFrame() != C.getStackFrame();
}
bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const {
if (!dispatch_semaphore_tII)
dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t");
for (const auto &C : B.captures()) {
const auto *T = C.getVariable()->getType()->getAs<TypedefType>();
if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII)
return true;
}
return false;
}
SmallVector<const MemRegion *, 4>
StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B,
CheckerContext &C) {
SmallVector<const MemRegion *, 4> Regions;
for (auto Var : B.referenced_vars()) {
SVal Val = C.getState()->getSVal(Var.getCapturedRegion());
const MemRegion *Region = Val.getAsRegion();
if (Region && isa<StackSpaceRegion>(Region->getMemorySpace()))
Regions.push_back(Region);
}
return Regions;
}
void StackAddrEscapeChecker::EmitStackError(CheckerContext &C,
const MemRegion *R,
const Expr *RetE) const {
ExplodedNode *N = C.generateNonFatalErrorNode();
if (!N)
return;
if (!BT_returnstack)
BT_returnstack = std::make_unique<BugType>(
CheckNames[CK_StackAddrEscapeChecker],
"Return of address to stack-allocated memory");
// Generate a report for this bug.
SmallString<128> buf;
llvm::raw_svector_ostream os(buf);
SourceRange range = genName(os, R, C.getASTContext());
os << " returned to caller";
auto report =
std::make_unique<PathSensitiveBugReport>(*BT_returnstack, os.str(), N);
report->addRange(RetE->getSourceRange());
if (range.isValid())
report->addRange(range);
C.emitReport(std::move(report));
}
void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures(
const BlockDataRegion &B, CheckerContext &C) const {
// There is a not-too-uncommon idiom
// where a block passed to dispatch_async captures a semaphore
// and then the thread (which called dispatch_async) is blocked on waiting
// for the completion of the execution of the block
// via dispatch_semaphore_wait. To avoid false-positives (for now)
// we ignore all the blocks which have captured
// a variable of the type "dispatch_semaphore_t".
if (isSemaphoreCaptured(*B.getDecl()))
return;
for (const MemRegion *Region : getCapturedStackRegions(B, C)) {
// The block passed to dispatch_async may capture another block
// created on the stack. However, there is no leak in this situaton,
// no matter if ARC or no ARC is enabled:
// dispatch_async copies the passed "outer" block (via Block_copy)
// and if the block has captured another "inner" block,
// the "inner" block will be copied as well.
if (isa<BlockDataRegion>(Region))
continue;
ExplodedNode *N = C.generateNonFatalErrorNode();
if (!N)
continue;
if (!BT_capturedstackasync)
BT_capturedstackasync = std::make_unique<BugType>(
CheckNames[CK_StackAddrAsyncEscapeChecker],
"Address of stack-allocated memory is captured");
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
SourceRange Range = genName(Out, Region, C.getASTContext());
Out << " is captured by an asynchronously-executed block";
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_capturedstackasync, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
C.emitReport(std::move(Report));
}
}
void StackAddrEscapeChecker::checkReturnedBlockCaptures(
const BlockDataRegion &B, CheckerContext &C) const {
for (const MemRegion *Region : getCapturedStackRegions(B, C)) {
if (isNotInCurrentFrame(Region, C))
continue;
ExplodedNode *N = C.generateNonFatalErrorNode();
if (!N)
continue;
if (!BT_capturedstackret)
BT_capturedstackret = std::make_unique<BugType>(
CheckNames[CK_StackAddrEscapeChecker],
"Address of stack-allocated memory is captured");
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
SourceRange Range = genName(Out, Region, C.getASTContext());
Out << " is captured by a returned block";
auto Report = std::make_unique<PathSensitiveBugReport>(*BT_capturedstackret,
Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
C.emitReport(std::move(Report));
}
}
void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker])
return;
if (!Call.isGlobalCFunction("dispatch_after") &&
!Call.isGlobalCFunction("dispatch_async"))
return;
for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) {
if (const BlockDataRegion *B = dyn_cast_or_null<BlockDataRegion>(
Call.getArgSVal(Idx).getAsRegion()))
checkAsyncExecutedBlockCaptures(*B, C);
}
}
void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS,
CheckerContext &C) const {
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
return;
const Expr *RetE = RS->getRetValue();
if (!RetE)
return;
RetE = RetE->IgnoreParens();
SVal V = C.getSVal(RetE);
const MemRegion *R = V.getAsRegion();
if (!R)
return;
if (const BlockDataRegion *B = dyn_cast<BlockDataRegion>(R))
checkReturnedBlockCaptures(*B, C);
if (!isa<StackSpaceRegion>(R->getMemorySpace()) || isNotInCurrentFrame(R, C))
return;
// Returning a record by value is fine. (In this case, the returned
// expression will be a copy-constructor, possibly wrapped in an
// ExprWithCleanups node.)
if (const ExprWithCleanups *Cleanup = dyn_cast<ExprWithCleanups>(RetE))
RetE = Cleanup->getSubExpr();
if (isa<CXXConstructExpr>(RetE) && RetE->getType()->isRecordType())
return;
// The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied
// so the stack address is not escaping here.
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(RetE)) {
if (isa<BlockDataRegion>(R) &&
ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject) {
return;
}
}
EmitStackError(C, R, RetE);
}
static const MemSpaceRegion *getStackOrGlobalSpaceRegion(const MemRegion *R) {
assert(R);
if (const auto *MemSpace = R->getMemorySpace()) {
if (const auto *SSR = MemSpace->getAs<StackSpaceRegion>())
return SSR;
if (const auto *GSR = MemSpace->getAs<GlobalsSpaceRegion>())
return GSR;
}
// If R describes a lambda capture, it will be a symbolic region
// referring to a field region of another symbolic region.
if (const auto *SymReg = R->getBaseRegion()->getAs<SymbolicRegion>()) {
if (const auto *OriginReg = SymReg->getSymbol()->getOriginRegion())
return getStackOrGlobalSpaceRegion(OriginReg);
}
return nullptr;
}
static const MemRegion *getOriginBaseRegion(const MemRegion *Reg) {
Reg = Reg->getBaseRegion();
while (const auto *SymReg = dyn_cast<SymbolicRegion>(Reg)) {
const auto *OriginReg = SymReg->getSymbol()->getOriginRegion();
if (!OriginReg)
break;
Reg = OriginReg->getBaseRegion();
}
return Reg;
}
static std::optional<std::string> printReferrer(const MemRegion *Referrer) {
assert(Referrer);
const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) {
if (isa<StaticGlobalSpaceRegion>(Space))
return "static";
if (isa<GlobalsSpaceRegion>(Space))
return "global";
assert(isa<StackSpaceRegion>(Space));
// This case covers top-level and inlined analyses.
return "caller";
}(getStackOrGlobalSpaceRegion(Referrer));
while (!Referrer->canPrintPretty()) {
if (const auto *SymReg = dyn_cast<SymbolicRegion>(Referrer);
SymReg && SymReg->getSymbol()->getOriginRegion()) {
Referrer = SymReg->getSymbol()->getOriginRegion()->getBaseRegion();
} else if (isa<CXXThisRegion>(Referrer)) {
// Skip members of a class, it is handled in CheckExprLifetime.cpp as
// warn_bind_ref_member_to_parameter or
// warn_init_ptr_member_to_parameter_addr
return std::nullopt;
} else if (isa<AllocaRegion>(Referrer)) {
// Skip alloca() regions, they indicate advanced memory management
// and higher likelihood of CSA false positives.
return std::nullopt;
} else {
assert(false && "Unexpected referrer region type.");
return std::nullopt;
}
}
assert(Referrer);
assert(Referrer->canPrintPretty());
std::string buf;
llvm::raw_string_ostream os(buf);
os << ReferrerMemorySpace << " variable ";
Referrer->printPretty(os);
return buf;
}
/// Check whether \p Region refers to a freshly minted symbol after an opaque
/// function call.
static bool isInvalidatedSymbolRegion(const MemRegion *Region) {
const auto *SymReg = Region->getAs<SymbolicRegion>();
if (!SymReg)
return false;
SymbolRef Symbol = SymReg->getSymbol();
const auto *DerS = dyn_cast<SymbolDerived>(Symbol);
return DerS && isa_and_nonnull<SymbolConjured>(DerS->getParentSymbol());
}
void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS,
CheckerContext &Ctx) const {
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
return;
ExplodedNode *Node = Ctx.getPredecessor();
bool ExitingTopFrame =
Ctx.getPredecessor()->getLocationContext()->inTopFrame();
if (ExitingTopFrame &&
Node->getLocation().getTag() == ExprEngine::cleanupNodeTag() &&
Node->getFirstPred()) {
// When finishing analysis of a top-level function, engine proactively
// removes dead symbols thus preventing this checker from looking through
// the output parameters. Take 1 step back, to the node where these symbols
// and their bindings are still present
Node = Node->getFirstPred();
}
// Iterate over all bindings to global variables and see if it contains
// a memory region in the stack space.
class CallBack : public StoreManager::BindingsHandler {
private:
CheckerContext &Ctx;
const StackFrameContext *PoppedFrame;
const bool TopFrame;
/// Look for stack variables referring to popped stack variables.
/// Returns true only if it found some dangling stack variables
/// referred by an other stack variable from different stack frame.
bool checkForDanglingStackVariable(const MemRegion *Referrer,
const MemRegion *Referred) {
const auto *ReferrerMemSpace = getStackOrGlobalSpaceRegion(Referrer);
const auto *ReferredMemSpace =
Referred->getMemorySpace()->getAs<StackSpaceRegion>();
if (!ReferrerMemSpace || !ReferredMemSpace)
return false;
const auto *ReferrerStackSpace =
ReferrerMemSpace->getAs<StackSpaceRegion>();
if (!ReferrerStackSpace)
return false;
if (const auto *ReferredFrame = ReferredMemSpace->getStackFrame();
ReferredFrame != PoppedFrame) {
return false;
}
if (ReferrerStackSpace->getStackFrame()->isParentOf(PoppedFrame)) {
V.emplace_back(Referrer, Referred);
return true;
}
if (isa<StackArgumentsSpaceRegion>(ReferrerMemSpace) &&
// Not a simple ptr (int*) but something deeper, e.g. int**
isa<SymbolicRegion>(Referrer->getBaseRegion()) &&
ReferrerStackSpace->getStackFrame() == PoppedFrame && TopFrame) {
// Output parameter of a top-level function
V.emplace_back(Referrer, Referred);
return true;
}
return false;
}
// Keep track of the variables that were invalidated through an opaque
// function call. Even if the initial values of such variables were bound to
// an address of a local variable, we cannot claim anything now, at the
// function exit, so skip them to avoid false positives.
void recordInInvalidatedRegions(const MemRegion *Region) {
if (isInvalidatedSymbolRegion(Region))
ExcludedRegions.insert(getOriginBaseRegion(Region));
}
public:
SmallVector<std::pair<const MemRegion *, const MemRegion *>, 10> V;
// ExcludedRegions are skipped from reporting.
// I.e., if a referrer in this set, skip the related bug report.
// It is useful to avoid false positive for the variables that were
// reset to a conjured value after an opaque function call.
llvm::SmallPtrSet<const MemRegion *, 4> ExcludedRegions;
CallBack(CheckerContext &CC, bool TopFrame)
: Ctx(CC), PoppedFrame(CC.getStackFrame()), TopFrame(TopFrame) {}
bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region,
SVal Val) override {
recordInInvalidatedRegions(Region);
const MemRegion *VR = Val.getAsRegion();
if (!VR)
return true;
if (checkForDanglingStackVariable(Region, VR))
return true;
// Check the globals for the same.
if (!isa_and_nonnull<GlobalsSpaceRegion>(
getStackOrGlobalSpaceRegion(Region)))
return true;
if (VR && VR->hasStackStorage() && !isNotInCurrentFrame(VR, Ctx))
V.emplace_back(Region, VR);
return true;
}
};
CallBack Cb(Ctx, ExitingTopFrame);
ProgramStateRef State = Node->getState();
State->getStateManager().getStoreManager().iterBindings(State->getStore(),
Cb);
if (Cb.V.empty())
return;
// Generate an error node.
ExplodedNode *N = Ctx.generateNonFatalErrorNode(State, Node);
if (!N)
return;
if (!BT_stackleak)
BT_stackleak =
std::make_unique<BugType>(CheckNames[CK_StackAddrEscapeChecker],
"Stack address leaks outside of stack frame");
for (const auto &P : Cb.V) {
const MemRegion *Referrer = P.first->getBaseRegion();
const MemRegion *Referred = P.second;
if (Cb.ExcludedRegions.contains(getOriginBaseRegion(Referrer))) {
continue;
}
// Generate a report for this bug.
const StringRef CommonSuffix =
" upon returning to the caller. This will be a dangling reference";
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
const SourceRange Range = genName(Out, Referred, Ctx.getASTContext());
if (isa<CXXTempObjectRegion, CXXLifetimeExtendedObjectRegion>(Referrer)) {
Out << " is still referred to by a temporary object on the stack"
<< CommonSuffix;
auto Report =
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
Ctx.emitReport(std::move(Report));
return;
}
auto ReferrerVariable = printReferrer(Referrer);
if (!ReferrerVariable) {
continue;
}
Out << " is still referred to by the " << *ReferrerVariable << CommonSuffix;
auto Report =
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
Ctx.emitReport(std::move(Report));
}
}
void ento::registerStackAddrEscapeBase(CheckerManager &mgr) {
mgr.registerChecker<StackAddrEscapeChecker>();
}
bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) {
return true;
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &Mgr) { \
StackAddrEscapeChecker *Chk = Mgr.getChecker<StackAddrEscapeChecker>(); \
Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true; \
Chk->CheckNames[StackAddrEscapeChecker::CK_##name] = \
Mgr.getCurrentCheckerName(); \
} \
\
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
REGISTER_CHECKER(StackAddrEscapeChecker)
REGISTER_CHECKER(StackAddrAsyncEscapeChecker)