Files
clang-p2996/compiler-rt/lib/interception/interception_win.cpp
Hans Wennborg 69ebac7ad6 [win/asan] Don't intercept memset etc. in ntdll (#120397)
When ntdll was added to the list of of "interesting DLLs" list (in
d58230b9dc), the intention was not to
intercept the "mini CRT" functions it exports. OverrideFunction would
only intercept the *first* function it found when searching the list of
DLLs, and ntdll was put last in that list.

However, after 42cdfbcf3e,
OverrideFunction intercepts *all* matching functions in those DLLs. As
a side-effect, the runtime would now intercept functions like memset
etc. also in ntdll.

This causes a problem when ntdll-internal functions like
RtlDispatchException call the intercepted memset, which tries to
inspect uncommitted shadow memory, raising an exception, and getting
stuck in that loop until the stack overflows.

Since we never intended to intercept ntdll's memset etc., the simplest
fix seems to be to actively ignore ntdll when intercepting those
functions.

Fixes #114793
2024-12-20 11:03:17 +01:00

1388 lines
48 KiB
C++

//===-- interception_win.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Windows-specific interception methods.
//
// This file is implementing several hooking techniques to intercept calls
// to functions. The hooks are dynamically installed by modifying the assembly
// code.
//
// The hooking techniques are making assumptions on the way the code is
// generated and are safe under these assumptions.
//
// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
// arbitrary branching on the whole memory space, the notion of trampoline
// region is used. A trampoline region is a memory space withing 2G boundary
// where it is safe to add custom assembly code to build 64-bit jumps.
//
// Hooking techniques
// ==================
//
// 1) Detour
//
// The Detour hooking technique is assuming the presence of a header with
// padding and an overridable 2-bytes nop instruction (mov edi, edi). The
// nop instruction can safely be replaced by a 2-bytes jump without any need
// to save the instruction. A jump to the target is encoded in the function
// header and the nop instruction is replaced by a short jump to the header.
//
// head: 5 x nop head: jmp <hook>
// func: mov edi, edi --> func: jmp short <head>
// [...] real: [...]
//
// This technique is only implemented on 32-bit architecture.
// Most of the time, Windows API are hookable with the detour technique.
//
// 2) Redirect Jump
//
// The redirect jump is applicable when the first instruction is a direct
// jump. The instruction is replaced by jump to the hook.
//
// func: jmp <label> --> func: jmp <hook>
//
// On a 64-bit architecture, a trampoline is inserted.
//
// func: jmp <label> --> func: jmp <tramp>
// [...]
//
// [trampoline]
// tramp: jmp QWORD [addr]
// addr: .bytes <hook>
//
// Note: <real> is equivalent to <label>.
//
// 3) HotPatch
//
// The HotPatch hooking is assuming the presence of a header with padding
// and a first instruction with at least 2-bytes.
//
// The reason to enforce the 2-bytes limitation is to provide the minimal
// space to encode a short jump. HotPatch technique is only rewriting one
// instruction to avoid breaking a sequence of instructions containing a
// branching target.
//
// Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
// see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
// Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
//
// head: 5 x nop head: jmp <hook>
// func: <instr> --> func: jmp short <head>
// [...] body: [...]
//
// [trampoline]
// real: <instr>
// jmp <body>
//
// On a 64-bit architecture:
//
// head: 6 x nop head: jmp QWORD [addr1]
// func: <instr> --> func: jmp short <head>
// [...] body: [...]
//
// [trampoline]
// addr1: .bytes <hook>
// real: <instr>
// jmp QWORD [addr2]
// addr2: .bytes <body>
//
// 4) Trampoline
//
// The Trampoline hooking technique is the most aggressive one. It is
// assuming that there is a sequence of instructions that can be safely
// replaced by a jump (enough room and no incoming branches).
//
// Unfortunately, these assumptions can't be safely presumed and code may
// be broken after hooking.
//
// func: <instr> --> func: jmp <hook>
// <instr>
// [...] body: [...]
//
// [trampoline]
// real: <instr>
// <instr>
// jmp <body>
//
// On a 64-bit architecture:
//
// func: <instr> --> func: jmp QWORD [addr1]
// <instr>
// [...] body: [...]
//
// [trampoline]
// addr1: .bytes <hook>
// real: <instr>
// <instr>
// jmp QWORD [addr2]
// addr2: .bytes <body>
//===----------------------------------------------------------------------===//
#include "interception.h"
#if SANITIZER_WINDOWS
#include "sanitizer_common/sanitizer_platform.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <psapi.h>
namespace __interception {
static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
static const int kJumpInstructionLength = 5;
static const int kShortJumpInstructionLength = 2;
UNUSED static const int kIndirectJumpInstructionLength = 6;
static const int kBranchLength =
FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
static const int kDirectBranchLength = kBranchLength + kAddressLength;
# if defined(_MSC_VER)
# define INTERCEPTION_FORMAT(f, a)
# else
# define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
# endif
static void (*ErrorReportCallback)(const char *format, ...)
INTERCEPTION_FORMAT(1, 2);
void SetErrorReportCallback(void (*callback)(const char *format, ...)) {
ErrorReportCallback = callback;
}
# define ReportError(...) \
do { \
if (ErrorReportCallback) \
ErrorReportCallback(__VA_ARGS__); \
} while (0)
static void InterceptionFailed() {
ReportError("interception_win: failed due to an unrecoverable error.\n");
// This acts like an abort when no debugger is attached. According to an old
// comment, calling abort() leads to an infinite recursion in CheckFailed.
__debugbreak();
}
static bool DistanceIsWithin2Gig(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
if (from < target)
return target - from <= (uptr)0x7FFFFFFFU;
else
return from - target <= (uptr)0x80000000U;
#else
// In a 32-bit address space, the address calculation will wrap, so this check
// is unnecessary.
return true;
#endif
}
static uptr GetMmapGranularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwAllocationGranularity;
}
UNUSED static uptr RoundDownTo(uptr size, uptr boundary) {
return size & ~(boundary - 1);
}
UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
return RoundDownTo(size + boundary - 1, boundary);
}
// FIXME: internal_str* and internal_mem* functions should be moved from the
// ASan sources into interception/.
static size_t _strlen(const char *str) {
const char* p = str;
while (*p != '\0') ++p;
return p - str;
}
static char* _strchr(char* str, char c) {
while (*str) {
if (*str == c)
return str;
++str;
}
return nullptr;
}
static int _strcmp(const char *s1, const char *s2) {
while (true) {
unsigned c1 = *s1;
unsigned c2 = *s2;
if (c1 != c2) return (c1 < c2) ? -1 : 1;
if (c1 == 0) break;
s1++;
s2++;
}
return 0;
}
static void _memset(void *p, int value, size_t sz) {
for (size_t i = 0; i < sz; ++i)
((char*)p)[i] = (char)value;
}
static void _memcpy(void *dst, void *src, size_t sz) {
char *dst_c = (char*)dst,
*src_c = (char*)src;
for (size_t i = 0; i < sz; ++i)
dst_c[i] = src_c[i];
}
static bool ChangeMemoryProtection(
uptr address, uptr size, DWORD *old_protection) {
return ::VirtualProtect((void*)address, size,
PAGE_EXECUTE_READWRITE,
old_protection) != FALSE;
}
static bool RestoreMemoryProtection(
uptr address, uptr size, DWORD old_protection) {
DWORD unused;
return ::VirtualProtect((void*)address, size,
old_protection,
&unused) != FALSE;
}
static bool IsMemoryPadding(uptr address, uptr size) {
u8* function = (u8*)address;
for (size_t i = 0; i < size; ++i)
if (function[i] != 0x90 && function[i] != 0xCC)
return false;
return true;
}
static const u8 kHintNop8Bytes[] = {
0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
};
template<class T>
static bool FunctionHasPrefix(uptr address, const T &pattern) {
u8* function = (u8*)address - sizeof(pattern);
for (size_t i = 0; i < sizeof(pattern); ++i)
if (function[i] != pattern[i])
return false;
return true;
}
static bool FunctionHasPadding(uptr address, uptr size) {
if (IsMemoryPadding(address - size, size))
return true;
if (size <= sizeof(kHintNop8Bytes) &&
FunctionHasPrefix(address, kHintNop8Bytes))
return true;
return false;
}
static void WritePadding(uptr from, uptr size) {
_memset((void*)from, 0xCC, (size_t)size);
}
static void WriteJumpInstruction(uptr from, uptr target) {
if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) {
ReportError(
"interception_win: cannot write jmp further than 2GB away, from %p to "
"%p.\n",
(void *)from, (void *)target);
InterceptionFailed();
}
ptrdiff_t offset = target - from - kJumpInstructionLength;
*(u8*)from = 0xE9;
*(u32*)(from + 1) = offset;
}
static void WriteShortJumpInstruction(uptr from, uptr target) {
sptr offset = target - from - kShortJumpInstructionLength;
if (offset < -128 || offset > 127) {
ReportError("interception_win: cannot write short jmp from %p to %p\n",
(void *)from, (void *)target);
InterceptionFailed();
}
*(u8*)from = 0xEB;
*(u8*)(from + 1) = (u8)offset;
}
#if SANITIZER_WINDOWS64
static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
// jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
// offset.
// The offset is the distance from then end of the jump instruction to the
// memory location containing the targeted address. The displacement is still
// 32-bit in x64, so indirect_target must be located within +/- 2GB range.
int offset = indirect_target - from - kIndirectJumpInstructionLength;
if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
indirect_target)) {
ReportError(
"interception_win: cannot write indirect jmp with target further than "
"2GB away, from %p to %p.\n",
(void *)from, (void *)indirect_target);
InterceptionFailed();
}
*(u16*)from = 0x25FF;
*(u32*)(from + 2) = offset;
}
#endif
static void WriteBranch(
uptr from, uptr indirect_target, uptr target) {
#if SANITIZER_WINDOWS64
WriteIndirectJumpInstruction(from, indirect_target);
*(u64*)indirect_target = target;
#else
(void)indirect_target;
WriteJumpInstruction(from, target);
#endif
}
static void WriteDirectBranch(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
// Emit an indirect jump through immediately following bytes:
// jmp [rip + kBranchLength]
// .quad <target>
WriteBranch(from, from + kBranchLength, target);
#else
WriteJumpInstruction(from, target);
#endif
}
struct TrampolineMemoryRegion {
uptr content;
uptr allocated_size;
uptr max_size;
};
UNUSED static const uptr kTrampolineRangeLimit = 1ull << 31; // 2 gig
static const int kMaxTrampolineRegion = 1024;
static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
static void *AllocateTrampolineRegion(uptr min_addr, uptr max_addr,
uptr func_addr, size_t granularity) {
# if SANITIZER_WINDOWS64
// Clamp {min,max}_addr to the accessible address space.
SYSTEM_INFO system_info;
::GetSystemInfo(&system_info);
uptr min_virtual_addr =
RoundUpTo((uptr)system_info.lpMinimumApplicationAddress, granularity);
uptr max_virtual_addr =
RoundDownTo((uptr)system_info.lpMaximumApplicationAddress, granularity);
if (min_addr < min_virtual_addr)
min_addr = min_virtual_addr;
if (max_addr > max_virtual_addr)
max_addr = max_virtual_addr;
// This loop probes the virtual address space to find free memory in the
// [min_addr, max_addr] interval. The search starts from func_addr and
// proceeds "outwards" towards the interval bounds using two probes, lo_addr
// and hi_addr, for addresses lower/higher than func_addr. At each step, it
// considers the probe closest to func_addr. If that address is not free, the
// probe is advanced (lower or higher depending on the probe) to the next
// memory block and the search continues.
uptr lo_addr = RoundDownTo(func_addr, granularity);
uptr hi_addr = RoundUpTo(func_addr, granularity);
while (lo_addr >= min_addr || hi_addr <= max_addr) {
// Consider the in-range address closest to func_addr.
uptr addr;
if (lo_addr < min_addr)
addr = hi_addr;
else if (hi_addr > max_addr)
addr = lo_addr;
else
addr = (hi_addr - func_addr < func_addr - lo_addr) ? hi_addr : lo_addr;
MEMORY_BASIC_INFORMATION info;
if (!::VirtualQuery((void *)addr, &info, sizeof(info))) {
ReportError(
"interception_win: VirtualQuery in AllocateTrampolineRegion failed "
"for %p\n",
(void *)addr);
return nullptr;
}
// Check whether a region can be allocated at |addr|.
if (info.State == MEM_FREE && info.RegionSize >= granularity) {
void *page =
::VirtualAlloc((void *)addr, granularity, MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
if (page == nullptr)
ReportError(
"interception_win: VirtualAlloc in AllocateTrampolineRegion failed "
"for %p\n",
(void *)addr);
return page;
}
if (addr == lo_addr)
lo_addr =
RoundDownTo((uptr)info.AllocationBase - granularity, granularity);
if (addr == hi_addr)
hi_addr =
RoundUpTo((uptr)info.BaseAddress + info.RegionSize, granularity);
}
ReportError(
"interception_win: AllocateTrampolineRegion failed to find free memory; "
"min_addr: %p, max_addr: %p, func_addr: %p, granularity: %zu\n",
(void *)min_addr, (void *)max_addr, (void *)func_addr, granularity);
return nullptr;
#else
return ::VirtualAlloc(nullptr,
granularity,
MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
#endif
}
// Used by unittests to release mapped memory space.
void TestOnlyReleaseTrampolineRegions() {
for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
if (current->content == 0)
return;
::VirtualFree((void*)current->content, 0, MEM_RELEASE);
current->content = 0;
}
}
static uptr AllocateMemoryForTrampoline(uptr func_address, size_t size) {
# if SANITIZER_WINDOWS64
uptr min_addr = func_address - kTrampolineRangeLimit;
uptr max_addr = func_address + kTrampolineRangeLimit - size;
// Allocate memory within 2GB of the module (DLL or EXE file) so that any
// address within the module can be referenced with PC-relative operands.
// This allows us to not just jump to the trampoline with a PC-relative
// offset, but to relocate any instructions that we copy to the trampoline
// which have references to the original module. If we can't find the base
// address of the module (e.g. if func_address is in mmap'ed memory), just
// stay within 2GB of func_address.
HMODULE module;
if (::GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,
(LPCWSTR)func_address, &module)) {
MODULEINFO module_info;
if (::GetModuleInformation(::GetCurrentProcess(), module,
&module_info, sizeof(module_info))) {
min_addr = (uptr)module_info.lpBaseOfDll + module_info.SizeOfImage -
kTrampolineRangeLimit;
max_addr = (uptr)module_info.lpBaseOfDll + kTrampolineRangeLimit - size;
}
}
// Check for overflow.
if (min_addr > func_address)
min_addr = 0;
if (max_addr < func_address)
max_addr = ~(uptr)0;
# else
uptr min_addr = 0;
uptr max_addr = ~min_addr;
# endif
// Find a region within [min_addr,max_addr] with enough space to allocate
// |size| bytes.
TrampolineMemoryRegion *region = nullptr;
for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
if (current->content == 0) {
// No valid region found, allocate a new region.
size_t bucket_size = GetMmapGranularity();
void *content = AllocateTrampolineRegion(min_addr, max_addr, func_address,
bucket_size);
if (content == nullptr)
return 0U;
current->content = (uptr)content;
current->allocated_size = 0;
current->max_size = bucket_size;
region = current;
break;
} else if (current->max_size - current->allocated_size > size) {
uptr next_address = current->content + current->allocated_size;
if (next_address < min_addr || next_address > max_addr)
continue;
// The space can be allocated in the current region.
region = current;
break;
}
}
// Failed to find a region.
if (region == nullptr)
return 0U;
// Allocate the space in the current region.
uptr allocated_space = region->content + region->allocated_size;
region->allocated_size += size;
WritePadding(allocated_space, size);
return allocated_space;
}
// The following prologues cannot be patched because of the short jump
// jumping to the patching region.
// Short jump patterns below are only for x86_64.
# if SANITIZER_WINDOWS_x64
// ntdll!wcslen in Win11
// 488bc1 mov rax,rcx
// 0fb710 movzx edx,word ptr [rax]
// 4883c002 add rax,2
// 6685d2 test dx,dx
// 75f4 jne -12
static const u8 kPrologueWithShortJump1[] = {
0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
};
// ntdll!strrchr in Win11
// 4c8bc1 mov r8,rcx
// 8a01 mov al,byte ptr [rcx]
// 48ffc1 inc rcx
// 84c0 test al,al
// 75f7 jne -9
static const u8 kPrologueWithShortJump2[] = {
0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
0x84, 0xc0, 0x75, 0xf7,
};
#endif
// Returns 0 on error.
static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
if (rel_offset) {
*rel_offset = 0;
}
#if SANITIZER_ARM64
// An ARM64 instruction is 4 bytes long.
return 4;
#endif
# if SANITIZER_WINDOWS_x64
if (memcmp((u8*)address, kPrologueWithShortJump1,
sizeof(kPrologueWithShortJump1)) == 0 ||
memcmp((u8*)address, kPrologueWithShortJump2,
sizeof(kPrologueWithShortJump2)) == 0) {
return 0;
}
#endif
switch (*(u64*)address) {
case 0x90909090909006EB: // stub: jmp over 6 x nop.
return 8;
}
switch (*(u8*)address) {
case 0x90: // 90 : nop
case 0xC3: // C3 : ret (for small/empty function interception
case 0xCC: // CC : int 3 i.e. registering weak functions)
return 1;
case 0x50: // push eax / rax
case 0x51: // push ecx / rcx
case 0x52: // push edx / rdx
case 0x53: // push ebx / rbx
case 0x54: // push esp / rsp
case 0x55: // push ebp / rbp
case 0x56: // push esi / rsi
case 0x57: // push edi / rdi
case 0x5D: // pop ebp / rbp
return 1;
case 0x6A: // 6A XX = push XX
return 2;
// This instruction can be encoded with a 16-bit immediate but that is
// incredibly unlikely.
case 0x68: // 68 XX XX XX XX : push imm32
return 5;
case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX
case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX
return 5;
// Cannot overwrite control-instruction. Return 0 to indicate failure.
case 0xE9: // E9 XX XX XX XX : jmp <label>
case 0xE8: // E8 XX XX XX XX : call <func>
case 0xEB: // EB XX : jmp XX (short jump)
case 0x70: // 7Y YY : jy XX (short conditional jump)
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7A:
case 0x7B:
case 0x7C:
case 0x7D:
case 0x7E:
case 0x7F:
return 0;
}
switch (*(u16*)(address)) {
case 0x018A: // 8A 01 : mov al, byte ptr [ecx]
case 0xFF8B: // 8B FF : mov edi, edi
case 0xEC8B: // 8B EC : mov ebp, esp
case 0xc889: // 89 C8 : mov eax, ecx
case 0xE589: // 89 E5 : mov ebp, esp
case 0xC18B: // 8B C1 : mov eax, ecx
case 0xC033: // 33 C0 : xor eax, eax
case 0xC933: // 33 C9 : xor ecx, ecx
case 0xD233: // 33 D2 : xor edx, edx
case 0xDB84: // 84 DB : test bl,bl
case 0xC984: // 84 C9 : test cl,cl
case 0xD284: // 84 D2 : test dl,dl
return 2;
case 0xE483: // 83 E4 XX : and esp, XX
case 0xEC83: // 83 EC XX : sub esp, XX
case 0xC1F6: // F6 C1 XX : test cl, XX
return 3;
// Cannot overwrite control-instruction. Return 0 to indicate failure.
case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
return 0;
}
switch (0x00FFFFFF & *(u32 *)address) {
case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
return 7;
}
switch (0x000000FF & *(u32 *)address) {
case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions)
return 3;
}
# if SANITIZER_WINDOWS_x64
switch (*(u8*)address) {
case 0xA1: // A1 XX XX XX XX XX XX XX XX :
// movabs eax, dword ptr ds:[XXXXXXXX]
return 9;
case 0xF2:
switch (*(u32 *)(address + 1)) {
case 0x2444110f: // f2 0f 11 44 24 XX movsd QWORD PTR
// [rsp + XX], xmm0
case 0x244c110f: // f2 0f 11 4c 24 XX movsd QWORD PTR
// [rsp + XX], xmm1
case 0x2454110f: // f2 0f 11 54 24 XX movsd QWORD PTR
// [rsp + XX], xmm2
case 0x245c110f: // f2 0f 11 5c 24 XX movsd QWORD PTR
// [rsp + XX], xmm3
case 0x2464110f: // f2 0f 11 64 24 XX movsd QWORD PTR
// [rsp + XX], xmm4
return 6;
}
break;
case 0x83:
const u8 next_byte = *(u8*)(address + 1);
const u8 mod = next_byte >> 6;
const u8 rm = next_byte & 7;
if (mod == 1 && rm == 4)
return 5; // 83 ModR/M SIB Disp8 Imm8
// add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
}
switch (*(u16*)address) {
case 0x5040: // push rax
case 0x5140: // push rcx
case 0x5240: // push rdx
case 0x5340: // push rbx
case 0x5440: // push rsp
case 0x5540: // push rbp
case 0x5640: // push rsi
case 0x5740: // push rdi
case 0x5441: // push r12
case 0x5541: // push r13
case 0x5641: // push r14
case 0x5741: // push r15
case 0x9066: // Two-byte NOP
case 0xc084: // test al, al
case 0x018a: // mov al, byte ptr [rcx]
return 2;
case 0x7E80: // 80 7E YY XX cmp BYTE PTR [rsi+YY], XX
case 0x7D80: // 80 7D YY XX cmp BYTE PTR [rbp+YY], XX
case 0x7A80: // 80 7A YY XX cmp BYTE PTR [rdx+YY], XX
case 0x7880: // 80 78 YY XX cmp BYTE PTR [rax+YY], XX
case 0x7B80: // 80 7B YY XX cmp BYTE PTR [rbx+YY], XX
case 0x7980: // 80 79 YY XX cmp BYTE ptr [rcx+YY], XX
return 4;
case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX]
case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
if (rel_offset)
*rel_offset = 2;
return 6;
case 0x7E81: // 81 7E YY XX XX XX XX cmp DWORD PTR [rsi+YY], XX XX XX XX
case 0x7D81: // 81 7D YY XX XX XX XX cmp DWORD PTR [rbp+YY], XX XX XX XX
case 0x7A81: // 81 7A YY XX XX XX XX cmp DWORD PTR [rdx+YY], XX XX XX XX
case 0x7881: // 81 78 YY XX XX XX XX cmp DWORD PTR [rax+YY], XX XX XX XX
case 0x7B81: // 81 7B YY XX XX XX XX cmp DWORD PTR [rbx+YY], XX XX XX XX
case 0x7981: // 81 79 YY XX XX XX XX cmp dword ptr [rcx+YY], XX XX XX XX
return 7;
}
switch (0x00FFFFFF & *(u32 *)address) {
case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax]
case 0xc00b4d: // 4d 0b c0 : or r8, r8
case 0xc03345: // 45 33 c0 : xor r8d, r8d
case 0xc08548: // 48 85 c0 : test rax, rax
case 0xc0854d: // 4d 85 c0 : test r8, r8
case 0xc08b41: // 41 8b c0 : mov eax, r8d
case 0xc0ff48: // 48 ff c0 : inc rax
case 0xc0ff49: // 49 ff c0 : inc r8
case 0xc18b41: // 41 8b c1 : mov eax, r9d
case 0xc18b48: // 48 8b c1 : mov rax, rcx
case 0xc18b4c: // 4c 8b c1 : mov r8, rcx
case 0xc1ff48: // 48 ff c1 : inc rcx
case 0xc1ff49: // 49 ff c1 : inc r9
case 0xc28b41: // 41 8b c2 : mov eax, r10d
case 0xc2b60f: // 0f b6 c2 : movzx eax, dl
case 0xc2ff48: // 48 ff c2 : inc rdx
case 0xc2ff49: // 49 ff c2 : inc r10
case 0xc38b41: // 41 8b c3 : mov eax, r11d
case 0xc3ff48: // 48 ff c3 : inc rbx
case 0xc3ff49: // 49 ff c3 : inc r11
case 0xc48b41: // 41 8b c4 : mov eax, r12d
case 0xc48b48: // 48 8b c4 : mov rax, rsp
case 0xc4ff49: // 49 ff c4 : inc r12
case 0xc5ff49: // 49 ff c5 : inc r13
case 0xc6ff48: // 48 ff c6 : inc rsi
case 0xc6ff49: // 49 ff c6 : inc r14
case 0xc7ff48: // 48 ff c7 : inc rdi
case 0xc7ff49: // 49 ff c7 : inc r15
case 0xc93345: // 45 33 c9 : xor r9d, r9d
case 0xc98548: // 48 85 c9 : test rcx, rcx
case 0xc9854d: // 4d 85 c9 : test r9, r9
case 0xc98b4c: // 4c 8b c9 : mov r9, rcx
case 0xca2b48: // 48 2b ca : sub rcx, rdx
case 0xca3b48: // 48 3b ca : cmp rcx, rdx
case 0xd12b48: // 48 2b d1 : sub rdx, rcx
case 0xd18b48: // 48 8b d1 : mov rdx, rcx
case 0xd18b4c: // 4c 8b d1 : mov r10, rcx
case 0xd28548: // 48 85 d2 : test rdx, rdx
case 0xd2854d: // 4d 85 d2 : test r10, r10
case 0xd28b4c: // 4c 8b d2 : mov r10, rdx
case 0xd2b60f: // 0f b6 d2 : movzx edx, dl
case 0xd98b4c: // 4c 8b d9 : mov r11, rcx
case 0xd9f748: // 48 f7 d9 : neg rcx
case 0xdb3345: // 45 33 db : xor r11d, r11d
case 0xdb8548: // 48 85 db : test rbx, rbx
case 0xdb854d: // 4d 85 db : test r11, r11
case 0xdc8b4c: // 4c 8b dc : mov r11, rsp
case 0xe48548: // 48 85 e4 : test rsp, rsp
case 0xe4854d: // 4d 85 e4 : test r12, r12
case 0xe58948: // 48 89 e5 : mov rbp, rsp
case 0xed8548: // 48 85 ed : test rbp, rbp
case 0xed854d: // 4d 85 ed : test r13, r13
case 0xf6854d: // 4d 85 f6 : test r14, r14
case 0xff854d: // 4d 85 ff : test r15, r15
return 3;
case 0x245489: // 89 54 24 XX : mov DWORD PTR[rsp + XX], edx
case 0x428d44: // 44 8d 42 XX : lea r8d , [rdx + XX]
case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
case 0xec8348: // 48 83 ec XX : sub rsp, XX
case 0xf88349: // 49 83 f8 XX : cmp r8, XX
return 4;
case 0x246483: // 83 64 24 XX YY : and DWORD PTR [rsp+XX], YY
return 5;
case 0x788166: // 66 81 78 XX YY YY cmp WORD PTR [rax+XX], YY YY
case 0x798166: // 66 81 79 XX YY YY cmp WORD PTR [rcx+XX], YY YY
case 0x7a8166: // 66 81 7a XX YY YY cmp WORD PTR [rdx+XX], YY YY
case 0x7b8166: // 66 81 7b XX YY YY cmp WORD PTR [rbx+XX], YY YY
case 0x7e8166: // 66 81 7e XX YY YY cmp WORD PTR [rsi+XX], YY YY
case 0x7f8166: // 66 81 7f XX YY YY cmp WORD PTR [rdi+XX], YY YY
return 6;
case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
return 7;
// clang-format off
case 0x788141: // 41 81 78 XX YY YY YY YY : cmp DWORD PTR [r8+YY], XX XX XX XX
case 0x798141: // 41 81 79 XX YY YY YY YY : cmp DWORD PTR [r9+YY], XX XX XX XX
case 0x7a8141: // 41 81 7a XX YY YY YY YY : cmp DWORD PTR [r10+YY], XX XX XX XX
case 0x7b8141: // 41 81 7b XX YY YY YY YY : cmp DWORD PTR [r11+YY], XX XX XX XX
case 0x7d8141: // 41 81 7d XX YY YY YY YY : cmp DWORD PTR [r13+YY], XX XX XX XX
case 0x7e8141: // 41 81 7e XX YY YY YY YY : cmp DWORD PTR [r14+YY], XX XX XX XX
case 0x7f8141: // 41 81 7f YY XX XX XX XX : cmp DWORD PTR [r15+YY], XX XX XX XX
case 0x247c81: // 81 7c 24 YY XX XX XX XX : cmp DWORD PTR [rsp+YY], XX XX XX XX
return 8;
// clang-format on
case 0x058b48: // 48 8b 05 XX XX XX XX :
// mov rax, QWORD PTR [rip + XXXXXXXX]
case 0x058d48: // 48 8d 05 XX XX XX XX :
// lea rax, QWORD PTR [rip + XXXXXXXX]
case 0x0d8948: // 48 89 0d XX XX XX XX :
// mov QWORD PTR [rip + XXXXXXXX], rcx
case 0x158948: // 48 89 15 XX XX XX XX :
// mov QWORD PTR [rip + XXXXXXXX], rdx
case 0x25ff48: // 48 ff 25 XX XX XX XX :
// rex.W jmp QWORD PTR [rip + XXXXXXXX]
case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
// Instructions having offset relative to 'rip' need offset adjustment.
if (rel_offset)
*rel_offset = 3;
return 7;
case 0x2444c7: // C7 44 24 XX YY YY YY YY
// mov dword ptr [rsp + XX], YYYYYYYY
return 8;
case 0x7c8141: // 41 81 7c ZZ YY XX XX XX XX
// cmp DWORD PTR [reg+reg*n+YY], XX XX XX XX
return 9;
}
switch (*(u32*)(address)) {
case 0x1ab60f44: // 44 0f b6 1a : movzx r11d, BYTE PTR [rdx]
return 4;
case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
case 0x244c8944: // 44 89 4c 24 XX mov DWORD PTR [rsp + XX], r9d
case 0x24448944: // 44 89 44 24 XX mov DWORD PTR [rsp + XX], r8d
case 0x246c8d48: // 48 8d 6c 24 XX : lea rbp, [rsp + XX]
return 5;
case 0x24648348: // 48 83 64 24 XX YY : and QWORD PTR [rsp + XX], YY
return 6;
}
#else
switch (*(u8*)address) {
case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
return 5;
}
switch (*(u16*)address) {
case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX]
case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX]
case 0x758B: // 8B 75 XX : mov esi, dword ptr [ebp + XX]
case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX]
return 3;
case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
return 6;
case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
return 7;
case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
return 4;
}
switch (0x00FFFFFF & *(u32*)address) {
case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
return 4;
}
switch (*(u32*)address) {
case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
return 5;
}
#endif
// Unknown instruction! This might happen when we add a new interceptor, use
// a new compiler version, or if Windows changed how some functions are
// compiled. In either case, we print the address and 8 bytes of instructions
// to notify the user about the error and to help identify the unknown
// instruction. Don't treat this as a fatal error, though we can break the
// debugger if one has been attached.
u8 *bytes = (u8 *)address;
ReportError(
"interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
"%02x %02x %02x\n",
(void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4],
bytes[5], bytes[6], bytes[7]);
if (::IsDebuggerPresent())
__debugbreak();
return 0;
}
size_t TestOnlyGetInstructionSize(uptr address, size_t *rel_offset) {
return GetInstructionSize(address, rel_offset);
}
// Returns 0 on error.
static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
size_t cursor = 0;
while (cursor < size) {
size_t instruction_size = GetInstructionSize(address + cursor);
if (!instruction_size)
return 0;
cursor += instruction_size;
}
return cursor;
}
static bool CopyInstructions(uptr to, uptr from, size_t size) {
size_t cursor = 0;
while (cursor != size) {
size_t rel_offset = 0;
size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
if (!instruction_size)
return false;
_memcpy((void *)(to + cursor), (void *)(from + cursor),
(size_t)instruction_size);
if (rel_offset) {
# if SANITIZER_WINDOWS64
// we want to make sure that the new relative offset still fits in 32-bits
// this will be untrue if relocated_offset \notin [-2**31, 2**31)
s64 delta = to - from;
s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
if (-0x8000'0000ll > relocated_offset ||
relocated_offset > 0x7FFF'FFFFll) {
ReportError(
"interception_win: CopyInstructions relocated_offset %lld outside "
"32-bit range\n",
(long long)relocated_offset);
return false;
}
# else
// on 32-bit, the relative offset will always be correct
s32 delta = to - from;
s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
# endif
*(s32 *)(to + cursor + rel_offset) = relocated_offset;
}
cursor += instruction_size;
}
return true;
}
#if !SANITIZER_WINDOWS64
bool OverrideFunctionWithDetour(
uptr old_func, uptr new_func, uptr *orig_old_func) {
const int kDetourHeaderLen = 5;
const u16 kDetourInstruction = 0xFF8B;
uptr header = (uptr)old_func - kDetourHeaderLen;
uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
// Validate that the function is hookable.
if (*(u16*)old_func != kDetourInstruction ||
!IsMemoryPadding(header, kDetourHeaderLen))
return false;
// Change memory protection to writable.
DWORD protection = 0;
if (!ChangeMemoryProtection(header, patch_length, &protection))
return false;
// Write a relative jump to the redirected function.
WriteJumpInstruction(header, new_func);
// Write the short jump to the function prefix.
WriteShortJumpInstruction(old_func, header);
// Restore previous memory protection.
if (!RestoreMemoryProtection(header, patch_length, protection))
return false;
if (orig_old_func)
*orig_old_func = old_func + kShortJumpInstructionLength;
return true;
}
#endif
bool OverrideFunctionWithRedirectJump(
uptr old_func, uptr new_func, uptr *orig_old_func) {
// Check whether the first instruction is a relative jump.
if (*(u8*)old_func != 0xE9)
return false;
if (orig_old_func) {
sptr relative_offset = *(s32 *)(old_func + 1);
uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
*orig_old_func = absolute_target;
}
#if SANITIZER_WINDOWS64
// If needed, get memory space for a trampoline jump.
uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
if (!trampoline)
return false;
WriteDirectBranch(trampoline, new_func);
#endif
// Change memory protection to writable.
DWORD protection = 0;
if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
return false;
// Write a relative jump to the redirected function.
WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
// Restore previous memory protection.
if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
return false;
return true;
}
bool OverrideFunctionWithHotPatch(
uptr old_func, uptr new_func, uptr *orig_old_func) {
const int kHotPatchHeaderLen = kBranchLength;
uptr header = (uptr)old_func - kHotPatchHeaderLen;
uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
// Validate that the function is hot patchable.
size_t instruction_size = GetInstructionSize(old_func);
if (instruction_size < kShortJumpInstructionLength ||
!FunctionHasPadding(old_func, kHotPatchHeaderLen))
return false;
if (orig_old_func) {
// Put the needed instructions into the trampoline bytes.
uptr trampoline_length = instruction_size + kDirectBranchLength;
uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
if (!trampoline)
return false;
if (!CopyInstructions(trampoline, old_func, instruction_size))
return false;
WriteDirectBranch(trampoline + instruction_size,
old_func + instruction_size);
*orig_old_func = trampoline;
}
// If needed, get memory space for indirect address.
uptr indirect_address = 0;
#if SANITIZER_WINDOWS64
indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
if (!indirect_address)
return false;
#endif
// Change memory protection to writable.
DWORD protection = 0;
if (!ChangeMemoryProtection(header, patch_length, &protection))
return false;
// Write jumps to the redirected function.
WriteBranch(header, indirect_address, new_func);
WriteShortJumpInstruction(old_func, header);
// Restore previous memory protection.
if (!RestoreMemoryProtection(header, patch_length, protection))
return false;
return true;
}
bool OverrideFunctionWithTrampoline(
uptr old_func, uptr new_func, uptr *orig_old_func) {
size_t instructions_length = kBranchLength;
size_t padding_length = 0;
uptr indirect_address = 0;
if (orig_old_func) {
// Find out the number of bytes of the instructions we need to copy
// to the trampoline.
instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
if (!instructions_length)
return false;
// Put the needed instructions into the trampoline bytes.
uptr trampoline_length = instructions_length + kDirectBranchLength;
uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
if (!trampoline)
return false;
if (!CopyInstructions(trampoline, old_func, instructions_length))
return false;
WriteDirectBranch(trampoline + instructions_length,
old_func + instructions_length);
*orig_old_func = trampoline;
}
#if SANITIZER_WINDOWS64
// Check if the targeted address can be encoded in the function padding.
// Otherwise, allocate it in the trampoline region.
if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
indirect_address = old_func - kAddressLength;
padding_length = kAddressLength;
} else {
indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
if (!indirect_address)
return false;
}
#endif
// Change memory protection to writable.
uptr patch_address = old_func - padding_length;
uptr patch_length = instructions_length + padding_length;
DWORD protection = 0;
if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
return false;
// Patch the original function.
WriteBranch(old_func, indirect_address, new_func);
// Restore previous memory protection.
if (!RestoreMemoryProtection(patch_address, patch_length, protection))
return false;
return true;
}
bool OverrideFunction(
uptr old_func, uptr new_func, uptr *orig_old_func) {
#if !SANITIZER_WINDOWS64
if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
return true;
#endif
if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
return true;
if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
return true;
if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
return true;
return false;
}
static void **InterestingDLLsAvailable() {
static const char *InterestingDLLs[] = {
"kernel32.dll",
"msvcr100d.dll", // VS2010
"msvcr110d.dll", // VS2012
"msvcr120d.dll", // VS2013
"vcruntime140d.dll", // VS2015
"ucrtbased.dll", // Universal CRT
"msvcr100.dll", // VS2010
"msvcr110.dll", // VS2012
"msvcr120.dll", // VS2013
"vcruntime140.dll", // VS2015
"ucrtbase.dll", // Universal CRT
# if (defined(__MINGW32__) && defined(__i386__))
"libc++.dll", // libc++
"libunwind.dll", // libunwind
# endif
// NTDLL must go last as it gets special treatment in OverrideFunction.
"ntdll.dll",
NULL
};
static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
if (!result[0]) {
for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
result[j++] = (void *)h;
}
}
return &result[0];
}
namespace {
// Utility for reading loaded PE images.
template <typename T> class RVAPtr {
public:
RVAPtr(void *module, uptr rva)
: ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
operator T *() { return ptr_; }
T *operator->() { return ptr_; }
T *operator++() { return ++ptr_; }
private:
T *ptr_;
};
} // namespace
// Internal implementation of GetProcAddress. At least since Windows 8,
// GetProcAddress appears to initialize DLLs before returning function pointers
// into them. This is problematic for the sanitizers, because they typically
// want to intercept malloc *before* MSVCRT initializes. Our internal
// implementation walks the export list manually without doing initialization.
uptr InternalGetProcAddress(void *module, const char *func_name) {
// Check that the module header is full and present.
RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
headers->FileHeader.SizeOfOptionalHeader <
sizeof(IMAGE_OPTIONAL_HEADER)) {
return 0;
}
IMAGE_DATA_DIRECTORY *export_directory =
&headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
if (export_directory->Size == 0)
return 0;
RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
export_directory->VirtualAddress);
RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
RVAPtr<DWORD> names(module, exports->AddressOfNames);
RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
for (DWORD i = 0; i < exports->NumberOfNames; i++) {
RVAPtr<char> name(module, names[i]);
if (!_strcmp(func_name, name)) {
DWORD index = ordinals[i];
RVAPtr<char> func(module, functions[index]);
// Handle forwarded functions.
DWORD offset = functions[index];
if (offset >= export_directory->VirtualAddress &&
offset < export_directory->VirtualAddress + export_directory->Size) {
// An entry for a forwarded function is a string with the following
// format: "<module> . <function_name>" that is stored into the
// exported directory.
char function_name[256];
size_t funtion_name_length = _strlen(func);
if (funtion_name_length >= sizeof(function_name) - 1) {
ReportError("interception_win: func too long: '%s'\n", (char *)func);
InterceptionFailed();
}
_memcpy(function_name, func, funtion_name_length);
function_name[funtion_name_length] = '\0';
char* separator = _strchr(function_name, '.');
if (!separator) {
ReportError("interception_win: no separator in '%s'\n",
function_name);
InterceptionFailed();
}
*separator = '\0';
void* redirected_module = GetModuleHandleA(function_name);
if (!redirected_module) {
ReportError("interception_win: GetModuleHandleA failed for '%s'\n",
function_name);
InterceptionFailed();
}
return InternalGetProcAddress(redirected_module, separator + 1);
}
return (uptr)(char *)func;
}
}
return 0;
}
bool OverrideFunction(
const char *func_name, uptr new_func, uptr *orig_old_func) {
static const char *kNtDllIgnore[] = {
"memcmp", "memcpy", "memmove", "memset"
};
bool hooked = false;
void **DLLs = InterestingDLLsAvailable();
for (size_t i = 0; DLLs[i]; ++i) {
if (DLLs[i + 1] == nullptr) {
// This is the last DLL, i.e. NTDLL. It exports some functions that
// we only want to override in the CRT.
for (const char *ignored : kNtDllIgnore) {
if (_strcmp(func_name, ignored) == 0)
return hooked;
}
}
uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
if (func_addr &&
OverrideFunction(func_addr, new_func, orig_old_func)) {
hooked = true;
}
}
return hooked;
}
bool OverrideImportedFunction(const char *module_to_patch,
const char *imported_module,
const char *function_name, uptr new_function,
uptr *orig_old_func) {
HMODULE module = GetModuleHandleA(module_to_patch);
if (!module)
return false;
// Check that the module header is full and present.
RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
headers->FileHeader.SizeOfOptionalHeader <
sizeof(IMAGE_OPTIONAL_HEADER)) {
return false;
}
IMAGE_DATA_DIRECTORY *import_directory =
&headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
// Iterate the list of imported DLLs. FirstThunk will be null for the last
// entry.
RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
import_directory->VirtualAddress);
for (; imports->FirstThunk != 0; ++imports) {
RVAPtr<const char> modname(module, imports->Name);
if (_stricmp(&*modname, imported_module) == 0)
break;
}
if (imports->FirstThunk == 0)
return false;
// We have two parallel arrays: the import address table (IAT) and the table
// of names. They start out containing the same data, but the loader rewrites
// the IAT to hold imported addresses and leaves the name table in
// OriginalFirstThunk alone.
RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
module, name_table->u1.ForwarderString);
const char *funcname = &import_by_name->Name[0];
if (_strcmp(funcname, function_name) == 0)
break;
}
}
if (name_table->u1.Ordinal == 0)
return false;
// Now we have the correct IAT entry. Do the swap. We have to make the page
// read/write first.
if (orig_old_func)
*orig_old_func = iat->u1.AddressOfData;
DWORD old_prot, unused_prot;
if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
&old_prot))
return false;
iat->u1.AddressOfData = new_function;
if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
return false; // Not clear if this failure bothers us.
return true;
}
} // namespace __interception
#endif // SANITIZER_WINDOWS