Files
clang-p2996/flang/lib/Semantics/canonicalize-omp.cpp
Krzysztof Parzyszek adeff9f63a [flang][OpenMP] Allow utility constructs in specification part (#121509)
Allow utility constructs (error and nothing) to appear in the
specification part as well as the execution part. The exception is
"ERROR AT(EXECUTION)" which should only be in the execution part.
In case of ambiguity (the boundary between the specification and the
execution part), utility constructs will be parsed as belonging to the
specification part. In such cases move them to the execution part in the
OpenMP canonicalization code.
2025-01-03 09:21:36 -06:00

329 lines
13 KiB
C++

//===-- lib/Semantics/canonicalize-omp.cpp --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "canonicalize-omp.h"
#include "flang/Parser/parse-tree-visitor.h"
// After Loop Canonicalization, rewrite OpenMP parse tree to make OpenMP
// Constructs more structured which provide explicit scopes for later
// structural checks and semantic analysis.
// 1. move structured DoConstruct and OmpEndLoopDirective into
// OpenMPLoopConstruct. Compilation will not proceed in case of errors
// after this pass.
// 2. Associate declarative OMP allocation directives with their
// respective executable allocation directive
// 3. TBD
namespace Fortran::semantics {
using namespace parser::literals;
class CanonicalizationOfOmp {
public:
template <typename T> bool Pre(T &) { return true; }
template <typename T> void Post(T &) {}
CanonicalizationOfOmp(parser::Messages &messages) : messages_{messages} {}
void Post(parser::Block &block) {
for (auto it{block.begin()}; it != block.end(); ++it) {
if (auto *ompCons{GetConstructIf<parser::OpenMPConstruct>(*it)}) {
// OpenMPLoopConstruct
if (auto *ompLoop{
std::get_if<parser::OpenMPLoopConstruct>(&ompCons->u)}) {
RewriteOpenMPLoopConstruct(*ompLoop, block, it);
}
} else if (auto *endDir{
GetConstructIf<parser::OmpEndLoopDirective>(*it)}) {
// Unmatched OmpEndLoopDirective
auto &dir{std::get<parser::OmpLoopDirective>(endDir->t)};
messages_.Say(dir.source,
"The %s directive must follow the DO loop associated with the "
"loop construct"_err_en_US,
parser::ToUpperCaseLetters(dir.source.ToString()));
}
} // Block list
}
void Post(parser::ExecutionPart &body) { RewriteOmpAllocations(body); }
// Pre-visit all constructs that have both a specification part and
// an execution part, and store the connection between the two.
bool Pre(parser::BlockConstruct &x) {
auto *spec = &std::get<parser::BlockSpecificationPart>(x.t).v;
auto *block = &std::get<parser::Block>(x.t);
blockForSpec_.insert(std::make_pair(spec, block));
return true;
}
bool Pre(parser::MainProgram &x) {
auto *spec = &std::get<parser::SpecificationPart>(x.t);
auto *block = &std::get<parser::ExecutionPart>(x.t).v;
blockForSpec_.insert(std::make_pair(spec, block));
return true;
}
bool Pre(parser::FunctionSubprogram &x) {
auto *spec = &std::get<parser::SpecificationPart>(x.t);
auto *block = &std::get<parser::ExecutionPart>(x.t).v;
blockForSpec_.insert(std::make_pair(spec, block));
return true;
}
bool Pre(parser::SubroutineSubprogram &x) {
auto *spec = &std::get<parser::SpecificationPart>(x.t);
auto *block = &std::get<parser::ExecutionPart>(x.t).v;
blockForSpec_.insert(std::make_pair(spec, block));
return true;
}
bool Pre(parser::SeparateModuleSubprogram &x) {
auto *spec = &std::get<parser::SpecificationPart>(x.t);
auto *block = &std::get<parser::ExecutionPart>(x.t).v;
blockForSpec_.insert(std::make_pair(spec, block));
return true;
}
void Post(parser::SpecificationPart &spec) {
CanonicalizeUtilityConstructs(spec);
}
private:
template <typename T> T *GetConstructIf(parser::ExecutionPartConstruct &x) {
if (auto *y{std::get_if<parser::ExecutableConstruct>(&x.u)}) {
if (auto *z{std::get_if<common::Indirection<T>>(&y->u)}) {
return &z->value();
}
}
return nullptr;
}
template <typename T> T *GetOmpIf(parser::ExecutionPartConstruct &x) {
if (auto *construct{GetConstructIf<parser::OpenMPConstruct>(x)}) {
if (auto *omp{std::get_if<T>(&construct->u)}) {
return omp;
}
}
return nullptr;
}
void RewriteOpenMPLoopConstruct(parser::OpenMPLoopConstruct &x,
parser::Block &block, parser::Block::iterator it) {
// Check the sequence of DoConstruct and OmpEndLoopDirective
// in the same iteration
//
// Original:
// ExecutableConstruct -> OpenMPConstruct -> OpenMPLoopConstruct
// OmpBeginLoopDirective
// ExecutableConstruct -> DoConstruct
// ExecutableConstruct -> OmpEndLoopDirective (if available)
//
// After rewriting:
// ExecutableConstruct -> OpenMPConstruct -> OpenMPLoopConstruct
// OmpBeginLoopDirective
// DoConstruct
// OmpEndLoopDirective (if available)
parser::Block::iterator nextIt;
auto &beginDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
auto &dir{std::get<parser::OmpLoopDirective>(beginDir.t)};
nextIt = it;
while (++nextIt != block.end()) {
// Ignore compiler directives.
if (GetConstructIf<parser::CompilerDirective>(*nextIt))
continue;
if (auto *doCons{GetConstructIf<parser::DoConstruct>(*nextIt)}) {
if (doCons->GetLoopControl()) {
// move DoConstruct
std::get<std::optional<parser::DoConstruct>>(x.t) =
std::move(*doCons);
nextIt = block.erase(nextIt);
// try to match OmpEndLoopDirective
if (nextIt != block.end()) {
if (auto *endDir{
GetConstructIf<parser::OmpEndLoopDirective>(*nextIt)}) {
std::get<std::optional<parser::OmpEndLoopDirective>>(x.t) =
std::move(*endDir);
block.erase(nextIt);
}
}
} else {
messages_.Say(dir.source,
"DO loop after the %s directive must have loop control"_err_en_US,
parser::ToUpperCaseLetters(dir.source.ToString()));
}
} else {
messages_.Say(dir.source,
"A DO loop must follow the %s directive"_err_en_US,
parser::ToUpperCaseLetters(dir.source.ToString()));
}
// If we get here, we either found a loop, or issued an error message.
return;
}
}
void RewriteOmpAllocations(parser::ExecutionPart &body) {
// Rewrite leading declarative allocations so they are nested
// within their respective executable allocate directive
//
// Original:
// ExecutionPartConstruct -> OpenMPDeclarativeAllocate
// ExecutionPartConstruct -> OpenMPDeclarativeAllocate
// ExecutionPartConstruct -> OpenMPExecutableAllocate
//
// After rewriting:
// ExecutionPartConstruct -> OpenMPExecutableAllocate
// ExecutionPartConstruct -> OpenMPDeclarativeAllocate
// ExecutionPartConstruct -> OpenMPDeclarativeAllocate
for (auto it = body.v.rbegin(); it != body.v.rend();) {
if (auto *exec = GetOmpIf<parser::OpenMPExecutableAllocate>(*(it++))) {
parser::OpenMPDeclarativeAllocate *decl;
std::list<parser::OpenMPDeclarativeAllocate> subAllocates;
while (it != body.v.rend() &&
(decl = GetOmpIf<parser::OpenMPDeclarativeAllocate>(*it))) {
subAllocates.push_front(std::move(*decl));
it = decltype(it)(body.v.erase(std::next(it).base()));
}
if (!subAllocates.empty()) {
std::get<std::optional<std::list<parser::OpenMPDeclarativeAllocate>>>(
exec->t) = {std::move(subAllocates)};
}
}
}
}
// Canonicalization of utility constructs.
//
// This addresses the issue of utility constructs that appear at the
// boundary between the specification and the execution parts, e.g.
// subroutine foo
// integer :: x ! Specification
// !$omp nothing
// x = 1 ! Execution
// ...
// end
//
// Utility constructs (error and nothing) can appear in both the
// specification part and the execution part, except "error at(execution)",
// which cannot be present in the specification part (whereas any utility
// construct can be in the execution part).
// When a utility construct is at the boundary, it should preferably be
// parsed as an element of the execution part, but since the specification
// part is parsed first, the utility construct ends up belonging to the
// specification part.
//
// To allow the likes of the following code to compile, move all utility
// construct that are at the end of the specification part to the beginning
// of the execution part.
//
// subroutine foo
// !$omp error at(execution) ! Initially parsed as declarative construct.
// ! Move it to the execution part.
// end
void CanonicalizeUtilityConstructs(parser::SpecificationPart &spec) {
auto found = blockForSpec_.find(&spec);
if (found == blockForSpec_.end()) {
// There is no corresponding execution part, so there is nothing to do.
return;
}
parser::Block &block = *found->second;
// There are two places where an OpenMP declarative construct can
// show up in the tuple in specification part:
// (1) in std::list<OpenMPDeclarativeConstruct>, or
// (2) in std::list<DeclarationConstruct>.
// The case (1) is only possible is the list (2) is empty.
auto &omps =
std::get<std::list<parser::OpenMPDeclarativeConstruct>>(spec.t);
auto &decls = std::get<std::list<parser::DeclarationConstruct>>(spec.t);
if (!decls.empty()) {
MoveUtilityConstructsFromDecls(decls, block);
} else {
MoveUtilityConstructsFromOmps(omps, block);
}
}
void MoveUtilityConstructsFromDecls(
std::list<parser::DeclarationConstruct> &decls, parser::Block &block) {
// Find the trailing range of DeclarationConstructs that are OpenMP
// utility construct, that are to be moved to the execution part.
std::list<parser::DeclarationConstruct>::reverse_iterator rlast = [&]() {
for (auto rit = decls.rbegin(), rend = decls.rend(); rit != rend; ++rit) {
parser::DeclarationConstruct &dc = *rit;
if (!std::holds_alternative<parser::SpecificationConstruct>(dc.u)) {
return rit;
}
auto &sc = std::get<parser::SpecificationConstruct>(dc.u);
using OpenMPDeclarativeConstruct =
common::Indirection<parser::OpenMPDeclarativeConstruct>;
if (!std::holds_alternative<OpenMPDeclarativeConstruct>(sc.u)) {
return rit;
}
// Got OpenMPDeclarativeConstruct. If it's not a utility construct
// then stop.
auto &odc = std::get<OpenMPDeclarativeConstruct>(sc.u).value();
if (!std::holds_alternative<parser::OpenMPUtilityConstruct>(odc.u)) {
return rit;
}
}
return decls.rend();
}();
std::transform(decls.rbegin(), rlast, std::front_inserter(block),
[](parser::DeclarationConstruct &dc) {
auto &sc = std::get<parser::SpecificationConstruct>(dc.u);
using OpenMPDeclarativeConstruct =
common::Indirection<parser::OpenMPDeclarativeConstruct>;
auto &oc = std::get<OpenMPDeclarativeConstruct>(sc.u).value();
auto &ut = std::get<parser::OpenMPUtilityConstruct>(oc.u);
return parser::ExecutionPartConstruct(parser::ExecutableConstruct(
common::Indirection(parser::OpenMPConstruct(std::move(ut)))));
});
decls.erase(rlast.base(), decls.end());
}
void MoveUtilityConstructsFromOmps(
std::list<parser::OpenMPDeclarativeConstruct> &omps,
parser::Block &block) {
using OpenMPDeclarativeConstruct = parser::OpenMPDeclarativeConstruct;
// Find the trailing range of OpenMPDeclarativeConstruct that are OpenMP
// utility construct, that are to be moved to the execution part.
std::list<OpenMPDeclarativeConstruct>::reverse_iterator rlast = [&]() {
for (auto rit = omps.rbegin(), rend = omps.rend(); rit != rend; ++rit) {
OpenMPDeclarativeConstruct &dc = *rit;
if (!std::holds_alternative<parser::OpenMPUtilityConstruct>(dc.u)) {
return rit;
}
}
return omps.rend();
}();
std::transform(omps.rbegin(), rlast, std::front_inserter(block),
[](parser::OpenMPDeclarativeConstruct &dc) {
auto &ut = std::get<parser::OpenMPUtilityConstruct>(dc.u);
return parser::ExecutionPartConstruct(parser::ExecutableConstruct(
common::Indirection(parser::OpenMPConstruct(std::move(ut)))));
});
omps.erase(rlast.base(), omps.end());
}
// Mapping from the specification parts to the blocks that follow in the
// same construct. This is for converting utility constructs to executable
// constructs.
std::map<parser::SpecificationPart *, parser::Block *> blockForSpec_;
parser::Messages &messages_;
};
bool CanonicalizeOmp(parser::Messages &messages, parser::Program &program) {
CanonicalizationOfOmp omp{messages};
Walk(program, omp);
return !messages.AnyFatalError();
}
} // namespace Fortran::semantics