Files
clang-p2996/libcxx/test/std/thread/thread.condition/thread.condition.condvarany/wait_for.pass.cpp
Louis Dionne ac88ad3c80 [libc++] Refactor tests for std::condition_variable (#91530)
These tests have always been flaky, which led us to using ALLOW_RETRIES
on them. However, while investigating #89083 (using Github provided
macOS builders), these tests surfaced as being basically unworkably
flaky in that environment.

This patch solves that problem by refactoring the tests to make them
succeed deterministically.
2024-05-23 10:33:25 -04:00

122 lines
3.6 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// UNSUPPORTED: no-threads, c++03
// <condition_variable>
// class condition_variable_any;
// template <class Lock, class Rep, class Period>
// cv_status
// wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);
#include <condition_variable>
#include <atomic>
#include <cassert>
#include <chrono>
#include <mutex>
#include <thread>
#include "make_test_thread.h"
#include "test_macros.h"
template <class Mutex>
struct MyLock : std::unique_lock<Mutex> {
using std::unique_lock<Mutex>::unique_lock;
};
template <class Function>
std::chrono::microseconds measure(Function f) {
std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
f();
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(end - start);
}
template <class Lock>
void test() {
using Mutex = typename Lock::mutex_type;
// Test unblocking via a call to notify_one() in another thread.
//
// To test this, we set a very long timeout in wait_for() and we wait
// again in case we get awoken spuriously. Note that it can actually
// happen that we get awoken spuriously and fail to recognize it
// (making this test useless), but the likelihood should be small.
{
std::atomic<bool> ready(false);
std::atomic<bool> likely_spurious(true);
auto timeout = std::chrono::seconds(3600);
std::condition_variable_any cv;
Mutex mutex;
std::thread t1 = support::make_test_thread([&] {
Lock lock(mutex);
auto elapsed = measure([&] {
ready = true;
do {
std::cv_status result = cv.wait_for(lock, timeout);
assert(result == std::cv_status::no_timeout);
} while (likely_spurious);
});
// This can technically fail if we have many spurious awakenings, but in practice the
// tolerance is so high that it shouldn't be a problem.
assert(elapsed < timeout);
});
std::thread t2 = support::make_test_thread([&] {
while (!ready) {
// spin
}
// Acquire the same mutex as t1. This blocks the condition variable inside its wait call
// so we can notify it while it is waiting.
Lock lock(mutex);
cv.notify_one();
likely_spurious = false;
lock.unlock();
});
t2.join();
t1.join();
}
// Test unblocking via a timeout.
//
// To test this, we create a thread that waits on a condition variable
// with a certain timeout, and we never awaken it. To guard against
// spurious wakeups, we wait again whenever we are awoken for a reason
// other than a timeout.
{
auto timeout = std::chrono::milliseconds(250);
std::condition_variable_any cv;
Mutex mutex;
std::thread t1 = support::make_test_thread([&] {
Lock lock(mutex);
std::cv_status result;
do {
auto elapsed = measure([&] { result = cv.wait_for(lock, timeout); });
if (result == std::cv_status::timeout)
assert(elapsed >= timeout);
} while (result != std::cv_status::timeout);
});
t1.join();
}
}
int main(int, char**) {
test<std::unique_lock<std::mutex>>();
test<std::unique_lock<std::timed_mutex>>();
test<MyLock<std::mutex>>();
test<MyLock<std::timed_mutex>>();
return 0;
}