Files
clang-p2996/mlir/lib/Conversion/ConvertToSPIRV/ConvertToSPIRVPass.cpp
Andrea Faulds 7724be9728 [mlir][spirv] Do SPIR-V serialization in -test-vulkan-runner-pipeline (#121494)
This commit is a further incremental step toward moving the whole
mlir-vulkan-runner MLIR pass pipeline into mlir-opt (see #73457). The
previous step was b225b3adf7b78387c9fcb97a3ff0e0a1e26eafe2, which moved
all device passes prior to SPIR-V serialization into a new mlir-opt test
pass, `-test-vulkan-runner-pipeline`.

This commit changes how SPIR-V serialization is accomplished for Vulkan
runner tests. Until now, this was done by the Vulkan-specific
ConvertGpuLaunchFuncToVulkanLaunchFunc pass. With this commit, this
responsibility is removed from that pass, and is instead done with the
existing generic GpuModuleToBinaryPass. In addition, the SPIR-V
serialization step is no longer done inside mlir-vulkan-runner, but
rather inside mlir-opt (in the `-test-vulkan-runner-pipeline` pass).
Both of these changes represent a greater alignment between
mlir-vulkan-runner and the other GPU integration tests. Notably, the IR
shapes produced by the mlir-opt pipelines for the Vulkan and SYCL
runners are now much more similar, with both using a gpu.binary op for
the serialized SPIR-V kernel.

In order to enable this, this commit includes these supporting changes:

- ConvertToSPIRVPass is enhanced to support producing the IR shape where
a spirv.module is nested inside a gpu.module, since this is what
GpuModuleToBinaryPass expects.
- ConvertGPULaunchFuncToVulkanLaunchFunc is changed to remove its SPIR-V
serialization functionality, and instead now extracts the SPIR-V from a
gpu.binary operation (as produced by ConvertToSPIRVPass).
- `-test-vulkan-runner-pipeline` now attaches SPIR-V target information
required by GpuModuleToBinaryPass.
- The WebGPU pass option, which had been removed from mlir-vulkan-runner
in the previous commit in this series, is restored as an option to
`-test-vulkan-runner-pipeline` instead, so that the WebGPU pass
continues being inserted into the pipeline just before SPIR-V
serialization.
2025-01-09 17:58:51 +01:00

137 lines
5.6 KiB
C++

//===- ConvertToSPIRVPass.cpp - MLIR SPIR-V Conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ConvertToSPIRV/ConvertToSPIRVPass.h"
#include "mlir/Conversion/ArithToSPIRV/ArithToSPIRV.h"
#include "mlir/Conversion/FuncToSPIRV/FuncToSPIRV.h"
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h"
#include "mlir/Conversion/IndexToSPIRV/IndexToSPIRV.h"
#include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h"
#include "mlir/Conversion/SCFToSPIRV/SCFToSPIRV.h"
#include "mlir/Conversion/UBToSPIRV/UBToSPIRV.h"
#include "mlir/Conversion/VectorToSPIRV/VectorToSPIRV.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Rewrite/FrozenRewritePatternSet.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <memory>
#define DEBUG_TYPE "convert-to-spirv"
namespace mlir {
#define GEN_PASS_DEF_CONVERTTOSPIRVPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Map memRef memory space to SPIR-V storage class.
void mapToMemRef(Operation *op, spirv::TargetEnvAttr &targetAttr) {
spirv::TargetEnv targetEnv(targetAttr);
bool targetEnvSupportsKernelCapability =
targetEnv.allows(spirv::Capability::Kernel);
spirv::MemorySpaceToStorageClassMap memorySpaceMap =
targetEnvSupportsKernelCapability
? spirv::mapMemorySpaceToOpenCLStorageClass
: spirv::mapMemorySpaceToVulkanStorageClass;
spirv::MemorySpaceToStorageClassConverter converter(memorySpaceMap);
spirv::convertMemRefTypesAndAttrs(op, converter);
}
/// Populate patterns for each dialect.
void populateConvertToSPIRVPatterns(const SPIRVTypeConverter &typeConverter,
ScfToSPIRVContext &scfToSPIRVContext,
RewritePatternSet &patterns) {
arith::populateCeilFloorDivExpandOpsPatterns(patterns);
arith::populateArithToSPIRVPatterns(typeConverter, patterns);
populateBuiltinFuncToSPIRVPatterns(typeConverter, patterns);
populateFuncToSPIRVPatterns(typeConverter, patterns);
populateGPUToSPIRVPatterns(typeConverter, patterns);
index::populateIndexToSPIRVPatterns(typeConverter, patterns);
populateMemRefToSPIRVPatterns(typeConverter, patterns);
populateVectorToSPIRVPatterns(typeConverter, patterns);
populateSCFToSPIRVPatterns(typeConverter, scfToSPIRVContext, patterns);
ub::populateUBToSPIRVConversionPatterns(typeConverter, patterns);
}
/// A pass to perform the SPIR-V conversion.
struct ConvertToSPIRVPass final
: impl::ConvertToSPIRVPassBase<ConvertToSPIRVPass> {
using ConvertToSPIRVPassBase::ConvertToSPIRVPassBase;
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *context = &getContext();
// Unroll vectors in function signatures to native size.
if (runSignatureConversion && failed(spirv::unrollVectorsInSignatures(op)))
return signalPassFailure();
// Unroll vectors in function bodies to native size.
if (runVectorUnrolling && failed(spirv::unrollVectorsInFuncBodies(op)))
return signalPassFailure();
// Generic conversion.
if (!convertGPUModules) {
spirv::TargetEnvAttr targetAttr = spirv::lookupTargetEnvOrDefault(op);
std::unique_ptr<ConversionTarget> target =
SPIRVConversionTarget::get(targetAttr);
SPIRVTypeConverter typeConverter(targetAttr);
RewritePatternSet patterns(context);
ScfToSPIRVContext scfToSPIRVContext;
mapToMemRef(op, targetAttr);
populateConvertToSPIRVPatterns(typeConverter, scfToSPIRVContext,
patterns);
if (failed(applyPartialConversion(op, *target, std::move(patterns))))
return signalPassFailure();
return;
}
// Clone each GPU kernel module for conversion, given that the GPU
// launch op still needs the original GPU kernel module.
SmallVector<Operation *, 1> gpuModules;
OpBuilder builder(context);
op->walk([&](gpu::GPUModuleOp gpuModule) {
if (nestInGPUModule)
builder.setInsertionPointToStart(gpuModule.getBody());
else
builder.setInsertionPoint(gpuModule);
gpuModules.push_back(builder.clone(*gpuModule));
});
// Run conversion for each module independently as they can have
// different TargetEnv attributes.
for (Operation *gpuModule : gpuModules) {
spirv::TargetEnvAttr targetAttr =
spirv::lookupTargetEnvOrDefault(gpuModule);
std::unique_ptr<ConversionTarget> target =
SPIRVConversionTarget::get(targetAttr);
SPIRVTypeConverter typeConverter(targetAttr);
RewritePatternSet patterns(context);
ScfToSPIRVContext scfToSPIRVContext;
mapToMemRef(gpuModule, targetAttr);
populateConvertToSPIRVPatterns(typeConverter, scfToSPIRVContext,
patterns);
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
}
}
};
} // namespace