Files
clang-p2996/mlir/lib/Dialect/SPIRV/Transforms/SPIRVConversion.cpp
Jacques Pienaar 09dfc5713d [mlir] Enable decoupling two kinds of greedy behavior. (#104649)
The greedy rewriter is used in many different flows and it has a lot of
convenience (work list management, debugging actions, tracing, etc). But
it combines two kinds of greedy behavior 1) how ops are matched, 2)
folding wherever it can.

These are independent forms of greedy and leads to inefficiency. E.g.,
cases where one need to create different phases in lowering and is
required to applying patterns in specific order split across different
passes. Using the driver one ends up needlessly retrying folding/having
multiple rounds of folding attempts, where one final run would have
sufficed.

Of course folks can locally avoid this behavior by just building their
own, but this is also a common requested feature that folks keep on
working around locally in suboptimal ways.

For downstream users, there should be no behavioral change. Updating
from the deprecated should just be a find and replace (e.g., `find ./
-type f -exec sed -i
's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety)
as the API arguments hasn't changed between the two.
2024-12-20 08:15:48 -08:00

1597 lines
64 KiB
C++

//===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities used to lower to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/Dialect/SPIRV/IR/TargetAndABI.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/OneToNTypeConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include <functional>
#include <optional>
#define DEBUG_TYPE "mlir-spirv-conversion"
using namespace mlir;
namespace {
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
static std::optional<SmallVector<int64_t>> getTargetShape(VectorType vecType) {
LLVM_DEBUG(llvm::dbgs() << "Get target shape\n");
if (vecType.isScalable()) {
LLVM_DEBUG(llvm::dbgs()
<< "--scalable vectors are not supported -> BAIL\n");
return std::nullopt;
}
SmallVector<int64_t> unrollShape = llvm::to_vector<4>(vecType.getShape());
std::optional<SmallVector<int64_t>> targetShape = SmallVector<int64_t>(
1, mlir::spirv::getComputeVectorSize(vecType.getShape().back()));
if (!targetShape) {
LLVM_DEBUG(llvm::dbgs() << "--no unrolling target shape defined\n");
return std::nullopt;
}
auto maybeShapeRatio = computeShapeRatio(unrollShape, *targetShape);
if (!maybeShapeRatio) {
LLVM_DEBUG(llvm::dbgs()
<< "--could not compute integral shape ratio -> BAIL\n");
return std::nullopt;
}
if (llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; })) {
LLVM_DEBUG(llvm::dbgs() << "--no unrolling needed -> SKIP\n");
return std::nullopt;
}
LLVM_DEBUG(llvm::dbgs()
<< "--found an integral shape ratio to unroll to -> SUCCESS\n");
return targetShape;
}
/// Checks that `candidates` extension requirements are possible to be satisfied
/// with the given `targetEnv`.
///
/// `candidates` is a vector of vector for extension requirements following
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
/// convention.
template <typename LabelT>
static LogicalResult checkExtensionRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> extStrings;
for (spirv::Extension ext : ors)
extStrings.push_back(spirv::stringifyExtension(ext));
llvm::dbgs() << label << " illegal: requires at least one extension in ["
<< llvm::join(extStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Checks that `candidates`capability requirements are possible to be satisfied
/// with the given `isAllowedFn`.
///
/// `candidates` is a vector of vector for capability requirements following
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
/// convention.
template <typename LabelT>
static LogicalResult checkCapabilityRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> capStrings;
for (spirv::Capability cap : ors)
capStrings.push_back(spirv::stringifyCapability(cap));
llvm::dbgs() << label << " illegal: requires at least one capability in ["
<< llvm::join(capStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Returns true if the given `storageClass` needs explicit layout when used in
/// Shader environments.
static bool needsExplicitLayout(spirv::StorageClass storageClass) {
switch (storageClass) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return true;
default:
return false;
}
}
/// Wraps the given `elementType` in a struct and gets the pointer to the
/// struct. This is used to satisfy Vulkan interface requirements.
static spirv::PointerType
wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
auto structType = needsExplicitLayout(storageClass)
? spirv::StructType::get(elementType, /*offsetInfo=*/0)
: spirv::StructType::get(elementType);
return spirv::PointerType::get(structType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
static spirv::ScalarType getIndexType(MLIRContext *ctx,
const SPIRVConversionOptions &options) {
return cast<spirv::ScalarType>(
IntegerType::get(ctx, options.use64bitIndex ? 64 : 32));
}
// TODO: This is a utility function that should probably be exposed by the
// SPIR-V dialect. Keeping it local till the use case arises.
static std::optional<int64_t>
getTypeNumBytes(const SPIRVConversionOptions &options, Type type) {
if (isa<spirv::ScalarType>(type)) {
auto bitWidth = type.getIntOrFloatBitWidth();
// According to the SPIR-V spec:
// "There is no physical size or bit pattern defined for values with boolean
// type. If they are stored (in conjunction with OpVariable), they can only
// be used with logical addressing operations, not physical, and only with
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
// Private, Function, Input, and Output."
if (bitWidth == 1)
return std::nullopt;
return bitWidth / 8;
}
if (auto complexType = dyn_cast<ComplexType>(type)) {
auto elementSize = getTypeNumBytes(options, complexType.getElementType());
if (!elementSize)
return std::nullopt;
return 2 * *elementSize;
}
if (auto vecType = dyn_cast<VectorType>(type)) {
auto elementSize = getTypeNumBytes(options, vecType.getElementType());
if (!elementSize)
return std::nullopt;
return vecType.getNumElements() * *elementSize;
}
if (auto memRefType = dyn_cast<MemRefType>(type)) {
// TODO: Layout should also be controlled by the ABI attributes. For now
// using the layout from MemRef.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (!memRefType.hasStaticShape() ||
failed(getStridesAndOffset(memRefType, strides, offset)))
return std::nullopt;
// To get the size of the memref object in memory, the total size is the
// max(stride * dimension-size) computed for all dimensions times the size
// of the element.
auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
if (!elementSize)
return std::nullopt;
if (memRefType.getRank() == 0)
return elementSize;
auto dims = memRefType.getShape();
if (llvm::is_contained(dims, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset) ||
llvm::is_contained(strides, ShapedType::kDynamic))
return std::nullopt;
int64_t memrefSize = -1;
for (const auto &shape : enumerate(dims))
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
return (offset + memrefSize) * *elementSize;
}
if (auto tensorType = dyn_cast<TensorType>(type)) {
if (!tensorType.hasStaticShape())
return std::nullopt;
auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
if (!elementSize)
return std::nullopt;
int64_t size = *elementSize;
for (auto shape : tensorType.getShape())
size *= shape;
return size;
}
// TODO: Add size computation for other types.
return std::nullopt;
}
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
static Type
convertScalarType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, spirv::ScalarType type,
std::optional<spirv::StorageClass> storageClass = {}) {
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.getExtensions(extensions, storageClass);
type.getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
if (!options.emulateLT32BitScalarTypes)
return nullptr;
// We only emulate narrower scalar types here and do not truncate results.
if (type.getIntOrFloatBitWidth() > 32) {
LLVM_DEBUG(llvm::dbgs()
<< type
<< " not converted to 32-bit for SPIR-V to avoid truncation\n");
return nullptr;
}
if (auto floatType = dyn_cast<FloatType>(type)) {
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return Builder(targetEnv.getContext()).getF32Type();
}
auto intType = cast<IntegerType>(type);
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(targetEnv.getContext(), /*width=*/32,
intType.getSignedness());
}
/// Converts a sub-byte integer `type` to i32 regardless of target environment.
/// Returns a nullptr for unsupported integer types, including non sub-byte
/// types.
///
/// Note that we don't recognize sub-byte types in `spirv::ScalarType` and use
/// the above given that these sub-byte types are not supported at all in
/// SPIR-V; there are no compute/storage capability for them like other
/// supported integer types.
static Type convertSubByteIntegerType(const SPIRVConversionOptions &options,
IntegerType type) {
if (type.getWidth() > 8) {
LLVM_DEBUG(llvm::dbgs() << "not a subbyte type\n");
return nullptr;
}
if (options.subByteTypeStorage != SPIRVSubByteTypeStorage::Packed) {
LLVM_DEBUG(llvm::dbgs() << "unsupported sub-byte storage kind\n");
return nullptr;
}
if (!llvm::isPowerOf2_32(type.getWidth())) {
LLVM_DEBUG(llvm::dbgs()
<< "unsupported non-power-of-two bitwidth in sub-byte" << type
<< "\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(type.getContext(), /*width=*/32,
type.getSignedness());
}
/// Returns a type with the same shape but with any index element type converted
/// to the matching integer type. This is a noop when the element type is not
/// the index type.
static ShapedType
convertIndexElementType(ShapedType type,
const SPIRVConversionOptions &options) {
Type indexType = dyn_cast<IndexType>(type.getElementType());
if (!indexType)
return type;
return type.clone(getIndexType(type.getContext(), options));
}
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
static Type
convertVectorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, VectorType type,
std::optional<spirv::StorageClass> storageClass = {}) {
type = cast<VectorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
// If this is not a spec allowed scalar type, try to handle sub-byte integer
// types.
auto intType = dyn_cast<IntegerType>(type.getElementType());
if (!intType) {
LLVM_DEBUG(llvm::dbgs()
<< type
<< " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
Type elementType = convertSubByteIntegerType(options, intType);
if (!elementType)
return nullptr;
if (type.getRank() <= 1 && type.getNumElements() == 1)
return elementType;
if (type.getNumElements() > 4) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: > 4-element unimplemented\n");
return nullptr;
}
return VectorType::get(type.getShape(), elementType);
}
if (type.getRank() <= 1 && type.getNumElements() == 1)
return convertScalarType(targetEnv, options, scalarType, storageClass);
if (!spirv::CompositeType::isValid(type)) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: not a valid composite type\n");
return nullptr;
}
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
cast<spirv::CompositeType>(type).getExtensions(extensions, storageClass);
cast<spirv::CompositeType>(type).getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (elementType)
return VectorType::get(type.getShape(), elementType);
return nullptr;
}
static Type
convertComplexType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options, ComplexType type,
std::optional<spirv::StorageClass> storageClass = {}) {
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
auto elementType =
convertScalarType(targetEnv, options, scalarType, storageClass);
if (!elementType)
return nullptr;
if (elementType != type.getElementType()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: complex type emulation unsupported\n");
return nullptr;
}
return VectorType::get(2, elementType);
}
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
///
/// Note that this is mainly for lowering constant tensors. In SPIR-V one can
/// create composite constants with OpConstantComposite to embed relative large
/// constant values and use OpCompositeExtract and OpCompositeInsert to
/// manipulate, like what we do for vectors.
static Type convertTensorType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
TensorType type) {
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
return nullptr;
}
type = cast<TensorType>(convertIndexElementType(type, options));
auto scalarType = dyn_cast_or_null<spirv::ScalarType>(type.getElementType());
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
std::optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
std::optional<int64_t> tensorSize = getTypeNumBytes(options, type);
if (!scalarSize || !tensorSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
int64_t arrayElemCount = *tensorSize / *scalarSize;
if (arrayElemCount == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot handle zero-element tensors\n");
return nullptr;
}
Type arrayElemType = convertScalarType(targetEnv, options, scalarType);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
return spirv::ArrayType::get(arrayElemType, arrayElemCount);
}
static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
unsigned numBoolBits = options.boolNumBits;
if (numBoolBits != 8) {
LLVM_DEBUG(llvm::dbgs()
<< "using non-8-bit storage for bool types unimplemented");
return nullptr;
}
auto elementType = dyn_cast<spirv::ScalarType>(
IntegerType::get(type.getContext(), numBoolBits));
if (!elementType)
return nullptr;
Type arrayElemType =
convertScalarType(targetEnv, options, elementType, storageClass);
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
if (type.getNumElements() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t memrefSize = llvm::divideCeil(type.getNumElements() * numBoolBits, 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertSubByteMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type,
spirv::StorageClass storageClass) {
IntegerType elementType = cast<IntegerType>(type.getElementType());
Type arrayElemType = convertSubByteIntegerType(options, elementType);
if (!arrayElemType)
return nullptr;
int64_t arrayElemSize = *getTypeNumBytes(options, arrayElemType);
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
if (type.getNumElements() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t memrefSize =
llvm::divideCeil(type.getNumElements() * elementType.getWidth(), 8);
int64_t arrayElemCount = llvm::divideCeil(memrefSize, arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVConversionOptions &options,
MemRefType type) {
auto attr = dyn_cast_or_null<spirv::StorageClassAttr>(type.getMemorySpace());
if (!attr) {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " illegal: expected memory space to be a SPIR-V storage class "
"attribute; please use MemorySpaceToStorageClassConverter to map "
"numeric memory spaces beforehand\n");
return nullptr;
}
spirv::StorageClass storageClass = attr.getValue();
if (isa<IntegerType>(type.getElementType())) {
if (type.getElementTypeBitWidth() == 1)
return convertBoolMemrefType(targetEnv, options, type, storageClass);
if (type.getElementTypeBitWidth() < 8)
return convertSubByteMemrefType(targetEnv, options, type, storageClass);
}
Type arrayElemType;
Type elementType = type.getElementType();
if (auto vecType = dyn_cast<VectorType>(elementType)) {
arrayElemType =
convertVectorType(targetEnv, options, vecType, storageClass);
} else if (auto complexType = dyn_cast<ComplexType>(elementType)) {
arrayElemType =
convertComplexType(targetEnv, options, complexType, storageClass);
} else if (auto scalarType = dyn_cast<spirv::ScalarType>(elementType)) {
arrayElemType =
convertScalarType(targetEnv, options, scalarType, storageClass);
} else if (auto indexType = dyn_cast<IndexType>(elementType)) {
type = cast<MemRefType>(convertIndexElementType(type, options));
arrayElemType = type.getElementType();
} else {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " unhandled: can only convert scalar or vector element type\n");
return nullptr;
}
if (!arrayElemType)
return nullptr;
std::optional<int64_t> arrayElemSize =
getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
// For OpenCL Kernel, dynamic shaped memrefs convert into a pointer pointing
// to the element.
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayElemType, storageClass);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, stride);
// For Vulkan we need extra wrapping struct and array to satisfy interface
// needs.
return wrapInStructAndGetPointer(arrayType, storageClass);
}
std::optional<int64_t> memrefSize = getTypeNumBytes(options, type);
if (!memrefSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
if (*memrefSize == 0) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: zero-element memrefs are not supported\n");
return nullptr;
}
int64_t arrayElemCount = llvm::divideCeil(*memrefSize, *arrayElemSize);
int64_t stride = needsExplicitLayout(storageClass) ? *arrayElemSize : 0;
auto arrayType = spirv::ArrayType::get(arrayElemType, arrayElemCount, stride);
if (targetEnv.allows(spirv::Capability::Kernel))
return spirv::PointerType::get(arrayType, storageClass);
return wrapInStructAndGetPointer(arrayType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type casting materialization
//===----------------------------------------------------------------------===//
/// Converts the given `inputs` to the original source `type` considering the
/// `targetEnv`'s capabilities.
///
/// This function is meant to be used for source materialization in type
/// converters. When the type converter needs to materialize a cast op back
/// to some original source type, we need to check whether the original source
/// type is supported in the target environment. If so, we can insert legal
/// SPIR-V cast ops accordingly.
///
/// Note that in SPIR-V the capabilities for storage and compute are separate.
/// This function is meant to handle the **compute** side; so it does not
/// involve storage classes in its logic. The storage side is expected to be
/// handled by MemRef conversion logic.
static Value castToSourceType(const spirv::TargetEnv &targetEnv,
OpBuilder &builder, Type type, ValueRange inputs,
Location loc) {
// We can only cast one value in SPIR-V.
if (inputs.size() != 1) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
Value input = inputs.front();
// Only support integer types for now. Floating point types to be implemented.
if (!isa<IntegerType>(type)) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
auto inputType = cast<IntegerType>(input.getType());
auto scalarType = dyn_cast<spirv::ScalarType>(type);
if (!scalarType) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Only support source type with a smaller bitwidth. This would mean we are
// truncating to go back so we don't need to worry about the signedness.
// For extension, we cannot have enough signal here to decide which op to use.
if (inputType.getIntOrFloatBitWidth() < scalarType.getIntOrFloatBitWidth()) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// Boolean values would need to use different ops than normal integer values.
if (type.isInteger(1)) {
Value one = spirv::ConstantOp::getOne(inputType, loc, builder);
return builder.create<spirv::IEqualOp>(loc, input, one);
}
// Check that the source integer type is supported by the environment.
SmallVector<ArrayRef<spirv::Extension>, 1> exts;
SmallVector<ArrayRef<spirv::Capability>, 2> caps;
scalarType.getExtensions(exts);
scalarType.getCapabilities(caps);
if (failed(checkCapabilityRequirements(type, targetEnv, caps)) ||
failed(checkExtensionRequirements(type, targetEnv, exts))) {
auto castOp = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return castOp.getResult(0);
}
// We've already made sure this is truncating previously, so we don't need to
// care about signedness here. Still try to use a corresponding op for better
// consistency though.
if (type.isSignedInteger()) {
return builder.create<spirv::SConvertOp>(loc, type, input);
}
return builder.create<spirv::UConvertOp>(loc, type, input);
}
//===----------------------------------------------------------------------===//
// Builtin Variables
//===----------------------------------------------------------------------===//
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
spirv::BuiltIn builtin) {
// Look through all global variables in the given `body` block and check if
// there is a spirv.GlobalVariable that has the same `builtin` attribute.
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
spirv::SPIRVDialect::getAttributeName(
spirv::Decoration::BuiltIn))) {
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
if (varBuiltIn && *varBuiltIn == builtin) {
return varOp;
}
}
}
return nullptr;
}
/// Gets name of global variable for a builtin.
std::string getBuiltinVarName(spirv::BuiltIn builtin, StringRef prefix,
StringRef suffix) {
return Twine(prefix).concat(stringifyBuiltIn(builtin)).concat(suffix).str();
}
/// Gets or inserts a global variable for a builtin within `body` block.
static spirv::GlobalVariableOp
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
if (auto varOp = getBuiltinVariable(body, builtin))
return varOp;
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&body);
spirv::GlobalVariableOp newVarOp;
switch (builtin) {
case spirv::BuiltIn::NumWorkgroups:
case spirv::BuiltIn::WorkgroupSize:
case spirv::BuiltIn::WorkgroupId:
case spirv::BuiltIn::LocalInvocationId:
case spirv::BuiltIn::GlobalInvocationId: {
auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
case spirv::BuiltIn::SubgroupId:
case spirv::BuiltIn::NumSubgroups:
case spirv::BuiltIn::SubgroupSize: {
auto ptrType =
spirv::PointerType::get(integerType, spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin, prefix, suffix);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
default:
emitError(loc, "unimplemented builtin variable generation for ")
<< stringifyBuiltIn(builtin);
}
return newVarOp;
}
//===----------------------------------------------------------------------===//
// Push constant storage
//===----------------------------------------------------------------------===//
/// Returns the pointer type for the push constant storage containing
/// `elementCount` 32-bit integer values.
static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
Builder &builder,
Type indexType) {
auto arrayType = spirv::ArrayType::get(indexType, elementCount,
/*stride=*/4);
auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
}
/// Returns the push constant varible containing `elementCount` 32-bit integer
/// values in `body`. Returns null op if such an op does not exit.
static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
unsigned elementCount) {
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
auto ptrType = dyn_cast<spirv::PointerType>(varOp.getType());
if (!ptrType)
continue;
// Note that Vulkan requires "There must be no more than one push constant
// block statically used per shader entry point." So we should always reuse
// the existing one.
if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
auto numElements = cast<spirv::ArrayType>(
cast<spirv::StructType>(ptrType.getPointeeType())
.getElementType(0))
.getNumElements();
if (numElements == elementCount)
return varOp;
}
}
return nullptr;
}
/// Gets or inserts a global variable for push constant storage containing
/// `elementCount` 32-bit integer values in `block`.
static spirv::GlobalVariableOp
getOrInsertPushConstantVariable(Location loc, Block &block,
unsigned elementCount, OpBuilder &b,
Type indexType) {
if (auto varOp = getPushConstantVariable(block, elementCount))
return varOp;
auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
auto type = getPushConstantStorageType(elementCount, builder, indexType);
const char *name = "__push_constant_var__";
return builder.create<spirv::GlobalVariableOp>(loc, type, name,
/*initializer=*/nullptr);
}
//===----------------------------------------------------------------------===//
// func::FuncOp Conversion Patterns
//===----------------------------------------------------------------------===//
/// A pattern for rewriting function signature to convert arguments of functions
/// to be of valid SPIR-V types.
struct FuncOpConversion final : OpConversionPattern<func::FuncOp> {
using OpConversionPattern<func::FuncOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
FunctionType fnType = funcOp.getFunctionType();
if (fnType.getNumResults() > 1)
return failure();
TypeConverter::SignatureConversion signatureConverter(
fnType.getNumInputs());
for (const auto &argType : enumerate(fnType.getInputs())) {
auto convertedType = getTypeConverter()->convertType(argType.value());
if (!convertedType)
return failure();
signatureConverter.addInputs(argType.index(), convertedType);
}
Type resultType;
if (fnType.getNumResults() == 1) {
resultType = getTypeConverter()->convertType(fnType.getResult(0));
if (!resultType)
return failure();
}
// Create the converted spirv.func op.
auto newFuncOp = rewriter.create<spirv::FuncOp>(
funcOp.getLoc(), funcOp.getName(),
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
resultType ? TypeRange(resultType)
: TypeRange()));
// Copy over all attributes other than the function name and type.
for (const auto &namedAttr : funcOp->getAttrs()) {
if (namedAttr.getName() != funcOp.getFunctionTypeAttrName() &&
namedAttr.getName() != SymbolTable::getSymbolAttrName())
newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(
&newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
return failure();
rewriter.eraseOp(funcOp);
return success();
}
};
/// A pattern for rewriting function signature to convert vector arguments of
/// functions to be of valid types
struct FuncOpVectorUnroll final : OpRewritePattern<func::FuncOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(func::FuncOp funcOp,
PatternRewriter &rewriter) const override {
FunctionType fnType = funcOp.getFunctionType();
// TODO: Handle declarations.
if (funcOp.isDeclaration()) {
LLVM_DEBUG(llvm::dbgs()
<< fnType << " illegal: declarations are unsupported\n");
return failure();
}
// Create a new func op with the original type and copy the function body.
auto newFuncOp = rewriter.create<func::FuncOp>(funcOp.getLoc(),
funcOp.getName(), fnType);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
Location loc = newFuncOp.getBody().getLoc();
Block &entryBlock = newFuncOp.getBlocks().front();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&entryBlock);
OneToNTypeMapping oneToNTypeMapping(fnType.getInputs());
// For arguments that are of illegal types and require unrolling.
// `unrolledInputNums` stores the indices of arguments that result from
// unrolling in the new function signature. `newInputNo` is a counter.
SmallVector<size_t> unrolledInputNums;
size_t newInputNo = 0;
// For arguments that are of legal types and do not require unrolling.
// `tmpOps` stores a mapping from temporary operations that serve as
// placeholders for new arguments that will be added later. These operations
// will be erased once the entry block's argument list is updated.
llvm::SmallDenseMap<Operation *, size_t> tmpOps;
// This counts the number of new operations created.
size_t newOpCount = 0;
// Enumerate through the arguments.
for (auto [origInputNo, origType] : enumerate(fnType.getInputs())) {
// Check whether the argument is of vector type.
auto origVecType = dyn_cast<VectorType>(origType);
if (!origVecType) {
// We need a placeholder for the old argument that will be erased later.
Value result = rewriter.create<arith::ConstantOp>(
loc, origType, rewriter.getZeroAttr(origType));
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
tmpOps.insert({result.getDefiningOp(), newInputNo});
oneToNTypeMapping.addInputs(origInputNo, origType);
++newInputNo;
++newOpCount;
continue;
}
// Check whether the vector needs unrolling.
auto targetShape = getTargetShape(origVecType);
if (!targetShape) {
// We need a placeholder for the old argument that will be erased later.
Value result = rewriter.create<arith::ConstantOp>(
loc, origType, rewriter.getZeroAttr(origType));
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
tmpOps.insert({result.getDefiningOp(), newInputNo});
oneToNTypeMapping.addInputs(origInputNo, origType);
++newInputNo;
++newOpCount;
continue;
}
VectorType unrolledType =
VectorType::get(*targetShape, origVecType.getElementType());
auto originalShape =
llvm::to_vector_of<int64_t, 4>(origVecType.getShape());
// Prepare the result vector.
Value result = rewriter.create<arith::ConstantOp>(
loc, origVecType, rewriter.getZeroAttr(origVecType));
++newOpCount;
// Prepare the placeholder for the new arguments that will be added later.
Value dummy = rewriter.create<arith::ConstantOp>(
loc, unrolledType, rewriter.getZeroAttr(unrolledType));
++newOpCount;
// Create the `vector.insert_strided_slice` ops.
SmallVector<int64_t> strides(targetShape->size(), 1);
SmallVector<Type> newTypes;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape)) {
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, dummy, result, offsets, strides);
newTypes.push_back(unrolledType);
unrolledInputNums.push_back(newInputNo);
++newInputNo;
++newOpCount;
}
rewriter.replaceAllUsesWith(newFuncOp.getArgument(origInputNo), result);
oneToNTypeMapping.addInputs(origInputNo, newTypes);
}
// Change the function signature.
auto convertedTypes = oneToNTypeMapping.getConvertedTypes();
auto newFnType = fnType.clone(convertedTypes, fnType.getResults());
rewriter.modifyOpInPlace(newFuncOp,
[&] { newFuncOp.setFunctionType(newFnType); });
// Update the arguments in the entry block.
entryBlock.eraseArguments(0, fnType.getNumInputs());
SmallVector<Location> locs(convertedTypes.size(), newFuncOp.getLoc());
entryBlock.addArguments(convertedTypes, locs);
// Replace the placeholder values with the new arguments. We assume there is
// only one block for now.
size_t unrolledInputIdx = 0;
for (auto [count, op] : enumerate(entryBlock.getOperations())) {
// We first look for operands that are placeholders for initially legal
// arguments.
Operation &curOp = op;
for (auto [operandIdx, operandVal] : llvm::enumerate(op.getOperands())) {
Operation *operandOp = operandVal.getDefiningOp();
if (auto it = tmpOps.find(operandOp); it != tmpOps.end()) {
size_t idx = operandIdx;
rewriter.modifyOpInPlace(&curOp, [&curOp, &newFuncOp, it, idx] {
curOp.setOperand(idx, newFuncOp.getArgument(it->second));
});
}
}
// Since all newly created operations are in the beginning, reaching the
// end of them means that any later `vector.insert_strided_slice` should
// not be touched.
if (count >= newOpCount)
continue;
if (auto vecOp = dyn_cast<vector::InsertStridedSliceOp>(op)) {
size_t unrolledInputNo = unrolledInputNums[unrolledInputIdx];
rewriter.modifyOpInPlace(&curOp, [&] {
curOp.setOperand(0, newFuncOp.getArgument(unrolledInputNo));
});
++unrolledInputIdx;
}
}
// Erase the original funcOp. The `tmpOps` do not need to be erased since
// they have no uses and will be handled by dead-code elimination.
rewriter.eraseOp(funcOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// func::ReturnOp Conversion Patterns
//===----------------------------------------------------------------------===//
/// A pattern for rewriting function signature and the return op to convert
/// vectors to be of valid types.
struct ReturnOpVectorUnroll final : OpRewritePattern<func::ReturnOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(func::ReturnOp returnOp,
PatternRewriter &rewriter) const override {
// Check whether the parent funcOp is valid.
auto funcOp = dyn_cast<func::FuncOp>(returnOp->getParentOp());
if (!funcOp)
return failure();
FunctionType fnType = funcOp.getFunctionType();
OneToNTypeMapping oneToNTypeMapping(fnType.getResults());
Location loc = returnOp.getLoc();
// For the new return op.
SmallVector<Value> newOperands;
// Enumerate through the results.
for (auto [origResultNo, origType] : enumerate(fnType.getResults())) {
// Check whether the argument is of vector type.
auto origVecType = dyn_cast<VectorType>(origType);
if (!origVecType) {
oneToNTypeMapping.addInputs(origResultNo, origType);
newOperands.push_back(returnOp.getOperand(origResultNo));
continue;
}
// Check whether the vector needs unrolling.
auto targetShape = getTargetShape(origVecType);
if (!targetShape) {
// The original argument can be used.
oneToNTypeMapping.addInputs(origResultNo, origType);
newOperands.push_back(returnOp.getOperand(origResultNo));
continue;
}
VectorType unrolledType =
VectorType::get(*targetShape, origVecType.getElementType());
// Create `vector.extract_strided_slice` ops to form legal vectors from
// the original operand of illegal type.
auto originalShape =
llvm::to_vector_of<int64_t, 4>(origVecType.getShape());
SmallVector<int64_t> strides(originalShape.size(), 1);
SmallVector<int64_t> extractShape(originalShape.size(), 1);
extractShape.back() = targetShape->back();
SmallVector<Type> newTypes;
Value returnValue = returnOp.getOperand(origResultNo);
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape)) {
Value result = rewriter.create<vector::ExtractStridedSliceOp>(
loc, returnValue, offsets, extractShape, strides);
if (originalShape.size() > 1) {
SmallVector<int64_t> extractIndices(originalShape.size() - 1, 0);
result =
rewriter.create<vector::ExtractOp>(loc, result, extractIndices);
}
newOperands.push_back(result);
newTypes.push_back(unrolledType);
}
oneToNTypeMapping.addInputs(origResultNo, newTypes);
}
// Change the function signature.
auto newFnType =
FunctionType::get(rewriter.getContext(), TypeRange(fnType.getInputs()),
TypeRange(oneToNTypeMapping.getConvertedTypes()));
rewriter.modifyOpInPlace(funcOp,
[&] { funcOp.setFunctionType(newFnType); });
// Replace the return op using the new operands. This will automatically
// update the entry block as well.
rewriter.replaceOp(returnOp,
rewriter.create<func::ReturnOp>(loc, newOperands));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public function for builtin variables
//===----------------------------------------------------------------------===//
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder,
StringRef prefix, StringRef suffix) {
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp =
getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(),
builtin, integerType, builder, prefix, suffix);
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
}
//===----------------------------------------------------------------------===//
// Public function for pushing constant storage
//===----------------------------------------------------------------------===//
Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
unsigned offset, Type integerType,
OpBuilder &builder) {
Location loc = op->getLoc();
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
loc, parent->getRegion(0).front(), elementCount, builder, integerType);
Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder);
Value offsetOp = builder.create<spirv::ConstantOp>(
loc, integerType, builder.getI32IntegerAttr(offset));
auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
auto acOp = builder.create<spirv::AccessChainOp>(
loc, addrOp, llvm::ArrayRef({zeroOp, offsetOp}));
return builder.create<spirv::LoadOp>(loc, acOp);
}
//===----------------------------------------------------------------------===//
// Public functions for index calculation
//===----------------------------------------------------------------------===//
Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
int64_t offset, Type integerType,
Location loc, OpBuilder &builder) {
assert(indices.size() == strides.size() &&
"must provide indices for all dimensions");
// TODO: Consider moving to use affine.apply and patterns converting
// affine.apply to standard ops. This needs converting to SPIR-V passes to be
// broken down into progressive small steps so we can have intermediate steps
// using other dialects. At the moment SPIR-V is the final sink.
Value linearizedIndex = builder.createOrFold<spirv::ConstantOp>(
loc, integerType, IntegerAttr::get(integerType, offset));
for (const auto &index : llvm::enumerate(indices)) {
Value strideVal = builder.createOrFold<spirv::ConstantOp>(
loc, integerType,
IntegerAttr::get(integerType, strides[index.index()]));
Value update =
builder.createOrFold<spirv::IMulOp>(loc, index.value(), strideVal);
linearizedIndex =
builder.createOrFold<spirv::IAddOp>(loc, update, linearizedIndex);
}
return linearizedIndex;
}
Value mlir::spirv::getVulkanElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
// Add a '0' at the start to index into the struct.
linearizedIndices.push_back(zero);
if (baseType.getRank() == 0) {
linearizedIndices.push_back(zero);
} else {
linearizedIndices.push_back(
linearizeIndex(indices, strides, offset, indexType, loc, builder));
}
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
}
Value mlir::spirv::getOpenCLElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, ShapedType::kDynamic) ||
ShapedType::isDynamic(offset)) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
Value linearIndex;
if (baseType.getRank() == 0) {
linearIndex = spirv::ConstantOp::getZero(indexType, loc, builder);
} else {
linearIndex =
linearizeIndex(indices, strides, offset, indexType, loc, builder);
}
Type pointeeType =
cast<spirv::PointerType>(basePtr.getType()).getPointeeType();
if (isa<spirv::ArrayType>(pointeeType)) {
linearizedIndices.push_back(linearIndex);
return builder.create<spirv::AccessChainOp>(loc, basePtr,
linearizedIndices);
}
return builder.create<spirv::PtrAccessChainOp>(loc, basePtr, linearIndex,
linearizedIndices);
}
Value mlir::spirv::getElementPtr(const SPIRVTypeConverter &typeConverter,
MemRefType baseType, Value basePtr,
ValueRange indices, Location loc,
OpBuilder &builder) {
if (typeConverter.allows(spirv::Capability::Kernel)) {
return getOpenCLElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
return getVulkanElementPtr(typeConverter, baseType, basePtr, indices, loc,
builder);
}
//===----------------------------------------------------------------------===//
// Public functions for vector unrolling
//===----------------------------------------------------------------------===//
int mlir::spirv::getComputeVectorSize(int64_t size) {
for (int i : {4, 3, 2}) {
if (size % i == 0)
return i;
}
return 1;
}
SmallVector<int64_t>
mlir::spirv::getNativeVectorShapeImpl(vector::ReductionOp op) {
VectorType srcVectorType = op.getSourceVectorType();
assert(srcVectorType.getRank() == 1); // Guaranteed by semantics
int64_t vectorSize =
mlir::spirv::getComputeVectorSize(srcVectorType.getDimSize(0));
return {vectorSize};
}
SmallVector<int64_t>
mlir::spirv::getNativeVectorShapeImpl(vector::TransposeOp op) {
VectorType vectorType = op.getResultVectorType();
SmallVector<int64_t> nativeSize(vectorType.getRank(), 1);
nativeSize.back() =
mlir::spirv::getComputeVectorSize(vectorType.getShape().back());
return nativeSize;
}
std::optional<SmallVector<int64_t>>
mlir::spirv::getNativeVectorShape(Operation *op) {
if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1) {
if (auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0])) {
SmallVector<int64_t> nativeSize(vecType.getRank(), 1);
nativeSize.back() =
mlir::spirv::getComputeVectorSize(vecType.getShape().back());
return nativeSize;
}
}
return TypeSwitch<Operation *, std::optional<SmallVector<int64_t>>>(op)
.Case<vector::ReductionOp, vector::TransposeOp>(
[](auto typedOp) { return getNativeVectorShapeImpl(typedOp); })
.Default([](Operation *) { return std::nullopt; });
}
LogicalResult mlir::spirv::unrollVectorsInSignatures(Operation *op) {
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
populateFuncOpVectorRewritePatterns(patterns);
populateReturnOpVectorRewritePatterns(patterns);
// We only want to apply signature conversion once to the existing func ops.
// Without specifying strictMode, the greedy pattern rewriter will keep
// looking for newly created func ops.
GreedyRewriteConfig config;
config.strictMode = GreedyRewriteStrictness::ExistingOps;
return applyPatternsGreedily(op, std::move(patterns), config);
}
LogicalResult mlir::spirv::unrollVectorsInFuncBodies(Operation *op) {
MLIRContext *context = op->getContext();
// Unroll vectors in function bodies to native vector size.
{
RewritePatternSet patterns(context);
auto options = vector::UnrollVectorOptions().setNativeShapeFn(
[](auto op) { return mlir::spirv::getNativeVectorShape(op); });
populateVectorUnrollPatterns(patterns, options);
if (failed(applyPatternsGreedily(op, std::move(patterns))))
return failure();
}
// Convert transpose ops into extract and insert pairs, in preparation of
// further transformations to canonicalize/cancel.
{
RewritePatternSet patterns(context);
auto options = vector::VectorTransformsOptions().setVectorTransposeLowering(
vector::VectorTransposeLowering::EltWise);
vector::populateVectorTransposeLoweringPatterns(patterns, options);
vector::populateVectorShapeCastLoweringPatterns(patterns);
if (failed(applyPatternsGreedily(op, std::move(patterns))))
return failure();
}
// Run canonicalization to cast away leading size-1 dimensions.
{
RewritePatternSet patterns(context);
// We need to pull in casting way leading one dims.
vector::populateCastAwayVectorLeadingOneDimPatterns(patterns);
vector::ReductionOp::getCanonicalizationPatterns(patterns, context);
vector::TransposeOp::getCanonicalizationPatterns(patterns, context);
// Decompose different rank insert_strided_slice and n-D
// extract_slided_slice.
vector::populateVectorInsertExtractStridedSliceDecompositionPatterns(
patterns);
vector::InsertOp::getCanonicalizationPatterns(patterns, context);
vector::ExtractOp::getCanonicalizationPatterns(patterns, context);
// Trimming leading unit dims may generate broadcast/shape_cast ops. Clean
// them up.
vector::BroadcastOp::getCanonicalizationPatterns(patterns, context);
vector::ShapeCastOp::getCanonicalizationPatterns(patterns, context);
if (failed(applyPatternsGreedily(op, std::move(patterns))))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// SPIR-V TypeConverter
//===----------------------------------------------------------------------===//
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
const SPIRVConversionOptions &options)
: targetEnv(targetAttr), options(options) {
// Add conversions. The order matters here: later ones will be tried earlier.
// Allow all SPIR-V dialect specific types. This assumes all builtin types
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO: This assumes that the SPIR-V types are valid to use in the given
// target environment, which should be the case if the whole pipeline is
// driven by the same target environment. Still, we probably still want to
// validate and convert to be safe.
addConversion([](spirv::SPIRVType type) { return type; });
addConversion([this](IndexType /*indexType*/) { return getIndexType(); });
addConversion([this](IntegerType intType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(intType))
return convertScalarType(this->targetEnv, this->options, scalarType);
if (intType.getWidth() < 8)
return convertSubByteIntegerType(this->options, intType);
return Type();
});
addConversion([this](FloatType floatType) -> std::optional<Type> {
if (auto scalarType = dyn_cast<spirv::ScalarType>(floatType))
return convertScalarType(this->targetEnv, this->options, scalarType);
return Type();
});
addConversion([this](ComplexType complexType) {
return convertComplexType(this->targetEnv, this->options, complexType);
});
addConversion([this](VectorType vectorType) {
return convertVectorType(this->targetEnv, this->options, vectorType);
});
addConversion([this](TensorType tensorType) {
return convertTensorType(this->targetEnv, this->options, tensorType);
});
addConversion([this](MemRefType memRefType) {
return convertMemrefType(this->targetEnv, this->options, memRefType);
});
// Register some last line of defense casting logic.
addSourceMaterialization(
[this](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
return castToSourceType(this->targetEnv, builder, type, inputs, loc);
});
addTargetMaterialization([](OpBuilder &builder, Type type, ValueRange inputs,
Location loc) {
auto cast = builder.create<UnrealizedConversionCastOp>(loc, type, inputs);
return cast.getResult(0);
});
}
Type SPIRVTypeConverter::getIndexType() const {
return ::getIndexType(getContext(), options);
}
MLIRContext *SPIRVTypeConverter::getContext() const {
return targetEnv.getAttr().getContext();
}
bool SPIRVTypeConverter::allows(spirv::Capability capability) const {
return targetEnv.allows(capability);
}
//===----------------------------------------------------------------------===//
// SPIR-V ConversionTarget
//===----------------------------------------------------------------------===//
std::unique_ptr<SPIRVConversionTarget>
SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
std::unique_ptr<SPIRVConversionTarget> target(
// std::make_unique does not work here because the constructor is private.
new SPIRVConversionTarget(targetAttr));
SPIRVConversionTarget *targetPtr = target.get();
target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
// We need to capture the raw pointer here because it is stable:
// target will be destroyed once this function is returned.
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
return target;
}
SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
bool SPIRVConversionTarget::isLegalOp(Operation *op) {
// Make sure this op is available at the given version. Ops not implementing
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
// SPIR-V versions.
if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) {
std::optional<spirv::Version> minVersion = minVersionIfx.getMinVersion();
if (minVersion && *minVersion > this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring min version "
<< spirv::stringifyVersion(*minVersion) << "\n");
return false;
}
}
if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) {
std::optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion();
if (maxVersion && *maxVersion < this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring max version "
<< spirv::stringifyVersion(*maxVersion) << "\n");
return false;
}
}
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryExtensionInterface do not require extensions to be
// available.
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
extensions.getExtensions())))
return false;
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryCapabilityInterface do not require capabilities to be
// available.
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
capabilities.getCapabilities())))
return false;
SmallVector<Type, 4> valueTypes;
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
valueTypes.append(op->result_type_begin(), op->result_type_end());
// Ensure that all types have been converted to SPIRV types.
if (llvm::any_of(valueTypes,
[](Type t) { return !isa<spirv::SPIRVType>(t); }))
return false;
// Special treatment for global variables, whose type requirements are
// conveyed by type attributes.
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
valueTypes.push_back(globalVar.getType());
// Make sure the op's operands/results use types that are allowed by the
// target environment.
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
for (Type valueType : valueTypes) {
typeExtensions.clear();
cast<spirv::SPIRVType>(valueType).getExtensions(typeExtensions);
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
typeExtensions)))
return false;
typeCapabilities.clear();
cast<spirv::SPIRVType>(valueType).getCapabilities(typeCapabilities);
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
typeCapabilities)))
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Public functions for populating patterns
//===----------------------------------------------------------------------===//
void mlir::populateBuiltinFuncToSPIRVPatterns(
const SPIRVTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
}
void mlir::populateFuncOpVectorRewritePatterns(RewritePatternSet &patterns) {
patterns.add<FuncOpVectorUnroll>(patterns.getContext());
}
void mlir::populateReturnOpVectorRewritePatterns(RewritePatternSet &patterns) {
patterns.add<ReturnOpVectorUnroll>(patterns.getContext());
}