Files
clang-p2996/mlir/test/Dialect/Bufferization/Transforms/one-shot-bufferize.mlir
Christopher Bate ced2fc7819 [mlir][bufferization] Fix OneShotBufferize when defaultMemorySpaceFn is used (#91524)
As described in issue llvm/llvm-project#91518, a previous PR
llvm/llvm-project#78484 introduced the `defaultMemorySpaceFn` into
bufferization options, allowing one to inform OneShotBufferize that it
should use a specified function to derive the memory space attribute
from the encoding attribute attached to tensor types.

However, introducing this feature exposed unhandled edge cases,
examples of which are introduced by this change in the new test under

`test/Dialect/Bufferization/Transforms/one-shot-bufferize-encodings.mlir`.

Fixing the inconsistencies introduced by `defaultMemorySpaceFn` is
pretty simple. This change:

- Updates the `bufferization.to_memref` and `bufferization.to_tensor`
  operations to explicitly include operand and destination types,
  whereas previously they relied on type inference to deduce the
  tensor types. Since the type inference cannot recover the correct
  tensor encoding/memory space, the operand and result types must be
  explicitly included. This is a small assembly format change, but it
  touches a large number of test files.

- Makes minor updates to other bufferization functions to handle the
  changes in building the above ops.

- Updates bufferization of `tensor.from_elements` to handle memory
  space.


Integration/upgrade guide:

In downstream projects, if you have tests or MLIR files that explicitly
use
`bufferization.to_tensor` or `bufferization.to_memref`, then update
them to the new assembly format as follows:

```
%1 = bufferization.to_memref %0 : memref<10xf32>
%2 = bufferization.to_tensor %1 : memref<10xf32>
```

becomes

```
%1 = bufferization.to_memref %0 : tensor<10xf32> to memref<10xf32>
%2 = bufferization.to_tensor %0 : memref<10xf32> to tensor<10xf32> 
```
2024-11-26 09:45:57 -07:00

271 lines
11 KiB
MLIR

// RUN: mlir-opt %s -one-shot-bufferize="allow-unknown-ops" -verify-diagnostics -split-input-file | FileCheck %s
// Run fuzzer with different seeds.
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=23" -verify-diagnostics -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=59" -verify-diagnostics -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=91" -verify-diagnostics -split-input-file -o /dev/null
// Run with top-down analysis.
// RUN: mlir-opt %s -one-shot-bufferize="allow-unknown-ops analysis-heuristic=top-down" -verify-diagnostics -split-input-file | FileCheck %s --check-prefix=CHECK-TOP-DOWN-ANALYSIS
// Test without analysis: Insert a copy on every buffer write.
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="allow-unknown-ops copy-before-write" -split-input-file | FileCheck %s --check-prefix=CHECK-COPY-BEFORE-WRITE
// CHECK-LABEL: func @no_conflict
// CHECK: memref.alloc
// CHECK: memref.store
// CHECK-NEXT: memref.store
// CHECK-NEXT: memref.store
// CHECK-NEXT: memref.store
// CHECK-COPY-BEFORE-WRITE-LABEL: func @no_conflict
// CHECK-COPY-BEFORE-WRITE: memref.alloc
// CHECK-COPY-BEFORE-WRITE: memref.store
// CHECK-COPY-BEFORE-WRITE: memref.store
// CHECK-COPY-BEFORE-WRITE: memref.store
// CHECK-COPY-BEFORE-WRITE: memref.alloc
// CHECK-COPY-BEFORE-WRITE: memref.copy
// CHECK-COPY-BEFORE-WRITE: memref.store
func.func @no_conflict(%fill: f32, %f: f32, %idx: index) -> tensor<3xf32> {
%t = tensor.from_elements %fill, %fill, %fill : tensor<3xf32>
%i = tensor.insert %f into %t[%idx] : tensor<3xf32>
return %i : tensor<3xf32>
}
// -----
// CHECK-LABEL: func @use_tensor_func_arg(
// CHECK-SAME: %[[A:.*]]: tensor<?xf32>
func.func @use_tensor_func_arg(%A : tensor<?xf32>) -> (vector<4xf32>) {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
// CHECK: %[[res:.*]] = vector.transfer_read %[[A_memref]]
%0 = vector.transfer_read %A[%c0], %f0 : tensor<?xf32>, vector<4xf32>
// CHECK: return %[[res]]
return %0 : vector<4xf32>
}
// -----
// CHECK-LABEL: func @return_tensor(
// CHECK-SAME: %[[A:.*]]: tensor<?xf32>
func.func @return_tensor(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
%c0 = arith.constant 0 : index
// CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
// CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
// CHECK: memref.copy %[[A_memref]], %[[alloc]]
// CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
// CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
%0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
// CHECK: return %[[res_tensor]]
return %0 : tensor<?xf32>
}
// -----
// CHECK-LABEL: func @func_without_tensor_args
func.func @func_without_tensor_args(%v : vector<10xf32>) -> () {
// CHECK: %[[alloc:.*]] = memref.alloc()
%0 = bufferization.alloc_tensor() : tensor<10xf32>
%c0 = arith.constant 0 : index
// CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
%1 = vector.transfer_write %v, %0[%c0] : vector<10xf32>, tensor<10xf32>
%cst = arith.constant 0.0 : f32
// CHECK: vector.transfer_read %[[alloc]]
%r = vector.transfer_read %1[%c0], %cst : tensor<10xf32>, vector<11xf32>
vector.print %r : vector<11xf32>
return
}
// -----
// CHECK-LABEL: func private @private_func
func.func private @private_func(tensor<?xf32>) -> ()
// CHECK-LABEL: func @empty_func()
func.func @empty_func() -> () {
return
}
// -----
// CHECK-LABEL: func @read_after_write_conflict(
func.func @read_after_write_conflict(%cst : f32, %idx : index, %idx2 : index)
-> (f32, f32) {
// CHECK-DAG: %[[alloc:.*]] = memref.alloc
// CHECK-DAG: %[[dummy:.*]] = "test.dummy_op"
// CHECK-DAG: %[[dummy_m:.*]] = bufferization.to_memref %[[dummy]]
%t = "test.dummy_op"() : () -> (tensor<10xf32>)
// CHECK: memref.copy %[[dummy_m]], %[[alloc]]
// CHECK: memref.store %{{.*}}, %[[alloc]]
%write = tensor.insert %cst into %t[%idx2] : tensor<10xf32>
// CHECK: %[[read:.*]] = "test.some_use"(%[[dummy]])
%read = "test.some_use"(%t) : (tensor<10xf32>) -> (f32)
// CHECK: %[[read2:.*]] = memref.load %[[alloc]]
%read2 = tensor.extract %write[%idx] : tensor<10xf32>
// CHECK: return %[[read]], %[[read2]]
return %read, %read2 : f32, f32
}
// -----
// CHECK-LABEL: func @copy_deallocated(
func.func @copy_deallocated() -> tensor<10xf32> {
// CHECK: %[[alloc:.*]] = memref.alloc()
%0 = bufferization.alloc_tensor() : tensor<10xf32>
// CHECK: %[[alloc_tensor:.*]] = bufferization.to_tensor %[[alloc]]
// CHECK: return %[[alloc_tensor]]
return %0 : tensor<10xf32>
}
// -----
// CHECK-LABEL: func @select_different_tensors(
// CHECK-SAME: %[[t:.*]]: tensor<?xf32>
func.func @select_different_tensors(%t: tensor<?xf32>, %sz: index, %pos: index, %c: i1) -> f32 {
// CHECK-DAG: %[[m:.*]] = bufferization.to_memref %[[t]] : tensor<?xf32> to memref<?xf32, strided{{.*}}>
// CHECK-DAG: %[[alloc:.*]] = memref.alloc(%{{.*}}) {{.*}} : memref<?xf32>
%0 = bufferization.alloc_tensor(%sz) : tensor<?xf32>
// A cast must be inserted because %t and %0 have different memref types.
// CHECK: %[[casted:.*]] = memref.cast %[[alloc]] : memref<?xf32> to memref<?xf32, strided{{.*}}>
// CHECK: arith.select %{{.*}}, %[[casted]], %[[m]]
%1 = arith.select %c, %0, %t : tensor<?xf32>
%2 = tensor.extract %1[%pos] : tensor<?xf32>
return %2 : f32
}
// -----
// CHECK-LABEL: func @alloc_tensor_with_copy(
// CHECK-SAME: %[[t:.*]]: tensor<5xf32>)
// TODO: Add a test case with dynamic dim size. This is not possible at the
// moment because this would create a tensor op during bufferization. That is
// currently forbidden.
func.func @alloc_tensor_with_copy(%t: tensor<5xf32>) -> tensor<5xf32> {
// CHECK: %[[m:.*]] = bufferization.to_memref %[[t]]
// CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32>
// CHECK: memref.copy %[[m]], %[[alloc]]
%0 = bufferization.alloc_tensor() copy(%t) : tensor<5xf32>
// CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]]
// CHECK: return %[[r]]
return %0 : tensor<5xf32>
}
// -----
// CHECK-LABEL: func @alloc_tensor_with_memory_space()
func.func @alloc_tensor_with_memory_space() -> tensor<5xf32> {
// CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32, 1>
%0 = bufferization.alloc_tensor() {memory_space = 1 : i64} : tensor<5xf32>
// CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]]
// CHECK: return %[[r]]
return %0 : tensor<5xf32>
}
// -----
// CHECK-LABEL: func @read_of_alias
// CHECK-TOP-DOWN-ANALYSIS-LABEL: func @read_of_alias
func.func @read_of_alias(%t: tensor<100xf32>, %pos1: index, %pos2: index,
%pos3: index, %pos4: index, %sz: index, %f: f32)
-> (f32, f32)
{
// CHECK: %[[alloc:.*]] = memref.alloc
// CHECK: memref.copy
// CHECK: memref.store %{{.*}}, %[[alloc]]
// CHECK-TOP-DOWN-ANALYSIS: %[[alloc:.*]] = memref.alloc
// CHECK-TOP-DOWN-ANALYSIS: memref.copy
// CHECK-TOP-DOWN-ANALYSIS: memref.store %{{.*}}, %[[alloc]]
%0 = tensor.insert %f into %t[%pos1] : tensor<100xf32>
%1 = tensor.extract_slice %t[%pos2][%sz][1] : tensor<100xf32> to tensor<?xf32>
%2 = tensor.extract %1[%pos3] : tensor<?xf32>
%3 = tensor.extract %0[%pos3] : tensor<100xf32>
return %2, %3 : f32, f32
}
// -----
// CHECK-LABEL: func @from_unranked_to_unranked(
// CHECK-SAME: %[[arg0:.*]]: tensor<*xi32>
func.func @from_unranked_to_unranked(%arg0: tensor<*xi32>) -> tensor<*xi32> {
// CHECK: %[[m:.*]] = bufferization.to_memref %[[arg0]] : tensor<*xi32> to memref<*xi32>
// CHECK: %[[t:.*]] = bufferization.to_tensor %[[m]]
// CHECK: return %[[t]] : tensor<*xi32>
%0 = tensor.cast %arg0 : tensor<*xi32> to tensor<*xi32>
return %0 : tensor<*xi32>
}
// -----
// CHECK-LABEL: func @tensor_copy(
// CHECK-SAME: %[[arg0:.*]]: tensor<5xf32>)
func.func @tensor_copy(%arg0: tensor<5xf32>) -> tensor<5xf32> {
// CHECK: %[[m:.*]] = bufferization.to_memref %[[arg0]]
// CHECK: %[[alloc:.*]] = memref.alloc() {{.*}} : memref<5xf32>
// CHECK: memref.copy %[[m]], %[[alloc]]
// CHECK: %[[r:.*]] = bufferization.to_tensor %[[alloc]]
// CHECK: return %[[r]]
%dest = bufferization.alloc_tensor() : tensor<5xf32>
%0 = bufferization.materialize_in_destination %arg0 in %dest
: (tensor<5xf32>, tensor<5xf32>) -> tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
// CHECK-LABEL: func @materialize_in_destination_buffer(
// CHECK-SAME: %[[t:.*]]: tensor<5xf32>, %[[m:.*]]: memref<5xf32>)
// CHECK: %[[b:.*]] = bufferization.to_memref %[[t]] : tensor<5xf32> to memref<5xf32, strided<[?], offset: ?>>
// CHECK: memref.copy %[[b]], %[[m]]
func.func @materialize_in_destination_buffer(%t: tensor<5xf32>, %m: memref<5xf32>) {
bufferization.materialize_in_destination %t in restrict writable %m
: (tensor<5xf32>, memref<5xf32>) -> ()
return
}
// -----
func.func @materialize_in_func_bbarg(%t: tensor<?xf32>, %dest: tensor<?xf32>)
-> tensor<?xf32> {
// This op is not bufferizable because function block arguments are
// read-only in regular One-Shot Bufferize. (Run One-Shot Module
// Bufferization instead.)
// expected-error @below{{not bufferizable under the given constraints: would write to read-only buffer}}
%0 = bufferization.materialize_in_destination %t in %dest
: (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
func.func @materialize_in_dest_raw(%f: f32, %f2: f32, %idx: index) -> (tensor<5xf32>, f32) {
%dest = bufferization.alloc_tensor() : tensor<5xf32>
// Note: The location of the RaW conflict may not be accurate (such as in this
// example). This is because the analysis operates on "alias sets" and not
// single SSA values. The location may point to any SSA value in the alias set
// that participates in the conflict.
// expected-error @below{{not bufferizable under the given constraints: cannot avoid RaW conflict}}
%dest_filled = linalg.fill ins(%f : f32) outs(%dest : tensor<5xf32>) -> tensor<5xf32>
%src = bufferization.alloc_tensor() : tensor<5xf32>
%src_filled = linalg.fill ins(%f2 : f32) outs(%src : tensor<5xf32>) -> tensor<5xf32>
%0 = bufferization.materialize_in_destination %src_filled in %dest_filled
: (tensor<5xf32>, tensor<5xf32>) -> tensor<5xf32>
// Read from %dest_filled, which makes it impossible to bufferize the
// materialize_in_destination op in-place.
%r = tensor.extract %dest_filled[%idx] : tensor<5xf32>
return %0, %r : tensor<5xf32>, f32
}