Files
clang-p2996/mlir/test/Dialect/Bufferization/ops.mlir
Christopher Bate ced2fc7819 [mlir][bufferization] Fix OneShotBufferize when defaultMemorySpaceFn is used (#91524)
As described in issue llvm/llvm-project#91518, a previous PR
llvm/llvm-project#78484 introduced the `defaultMemorySpaceFn` into
bufferization options, allowing one to inform OneShotBufferize that it
should use a specified function to derive the memory space attribute
from the encoding attribute attached to tensor types.

However, introducing this feature exposed unhandled edge cases,
examples of which are introduced by this change in the new test under

`test/Dialect/Bufferization/Transforms/one-shot-bufferize-encodings.mlir`.

Fixing the inconsistencies introduced by `defaultMemorySpaceFn` is
pretty simple. This change:

- Updates the `bufferization.to_memref` and `bufferization.to_tensor`
  operations to explicitly include operand and destination types,
  whereas previously they relied on type inference to deduce the
  tensor types. Since the type inference cannot recover the correct
  tensor encoding/memory space, the operand and result types must be
  explicitly included. This is a small assembly format change, but it
  touches a large number of test files.

- Makes minor updates to other bufferization functions to handle the
  changes in building the above ops.

- Updates bufferization of `tensor.from_elements` to handle memory
  space.


Integration/upgrade guide:

In downstream projects, if you have tests or MLIR files that explicitly
use
`bufferization.to_tensor` or `bufferization.to_memref`, then update
them to the new assembly format as follows:

```
%1 = bufferization.to_memref %0 : memref<10xf32>
%2 = bufferization.to_tensor %1 : memref<10xf32>
```

becomes

```
%1 = bufferization.to_memref %0 : tensor<10xf32> to memref<10xf32>
%2 = bufferization.to_tensor %0 : memref<10xf32> to tensor<10xf32> 
```
2024-11-26 09:45:57 -07:00

86 lines
4.2 KiB
MLIR

// RUN: mlir-opt %s | mlir-opt | FileCheck %s
// RUN: mlir-opt %s --mlir-print-op-generic | mlir-opt | FileCheck %s
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed)
}>
// CHECK-LABEL: func @test_clone
func.func @test_clone(%buf : memref<*xf32>) -> memref<*xf32> {
%clone = bufferization.clone %buf : memref<*xf32> to memref<*xf32>
return %clone : memref<*xf32>
}
// CHECK-LABEL: test_to_memref
func.func @test_to_memref(%arg0: tensor<?xi64>, %arg1: tensor<*xi64>)
-> (memref<?xi64, affine_map<(d0) -> (d0 + 7)>>, memref<*xi64, 1>) {
%0 = bufferization.to_memref %arg0
: tensor<?xi64> to memref<?xi64, affine_map<(d0) -> (d0 + 7)>>
%1 = bufferization.to_memref %arg1
: tensor<*xi64> to memref<*xi64, 1>
return %0, %1 : memref<?xi64, affine_map<(d0) -> (d0 + 7)>>, memref<*xi64, 1>
}
// CHECK-LABEL: func @test_to_tensor
func.func @test_to_tensor(%buf : memref<2xf32>) -> tensor<2xf32> {
%tensor = bufferization.to_tensor %buf restrict writable : memref<2xf32> to tensor<2xf32>
return %tensor : tensor<2xf32>
}
// CHECK-LABEL: func @test_alloc_tensor_op
func.func @test_alloc_tensor_op(%t: tensor<?x5xf32>, %sz: index)
-> tensor<?x5xf32>
{
// CHECK: bufferization.alloc_tensor(%{{.*}}) : tensor<?x5xf32>
%0 = bufferization.alloc_tensor(%sz) : tensor<?x5xf32>
// CHECK: bufferization.alloc_tensor() copy(%{{.*}}) : tensor<?x5xf32>
%1 = bufferization.alloc_tensor() copy(%t) : tensor<?x5xf32>
// CHECK: bufferization.alloc_tensor() : tensor<5x6xf32>
%2 = bufferization.alloc_tensor() : tensor<5x6xf32>
// CHECK: bufferization.alloc_tensor(%{{.*}}, %{{.*}}) : tensor<?x?xf32>
%3 = bufferization.alloc_tensor(%sz, %sz) : tensor<?x?xf32>
// CHECK: bufferization.alloc_tensor() copy(%{{.*}}) {escape = true} : tensor<?x5xf32>
%4 = bufferization.alloc_tensor() copy(%t) {escape = true} : tensor<?x5xf32>
// CHECK: bufferization.alloc_tensor() copy(%{{.*}}) {escape = false} : tensor<?x5xf32>
%5 = bufferization.alloc_tensor() copy(%t) {escape = false} : tensor<?x5xf32>
%c100 = arith.constant 100 : index
// CHECK: bufferization.alloc_tensor() size_hint=
%6 = bufferization.alloc_tensor() size_hint=%c100 : tensor<100x100xf64, #CSR>
// CHECK: bufferization.alloc_tensor(%{{.+}}) {memory_space = "foo"} : tensor<?xf32>
%7 = bufferization.alloc_tensor(%sz) {memory_space = "foo"} : tensor<?xf32>
return %1 : tensor<?x5xf32>
}
// CHECK-LABEL: func @test_dealloc_tensor_op
func.func @test_dealloc_tensor_op(%arg0: tensor<4xi32>) {
// CHECK: bufferization.dealloc_tensor {{.*}} : tensor<4xi32>
bufferization.dealloc_tensor %arg0 : tensor<4xi32>
return
}
// CHECK-LABEL: func @test_materialize_in_destination_op
func.func @test_materialize_in_destination_op(
%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: memref<?xf32, 3>,
%arg4: tensor<5xf32>) -> tensor<?xf32> {
// CHECK: bufferization.materialize_in_destination {{.*}} : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
%1 = bufferization.materialize_in_destination %arg0 in %arg1 : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
// CHECK: bufferization.materialize_in_destination {{.*}} : (tensor<?xf32>, memref<?xf32, 3>) -> ()
bufferization.materialize_in_destination %arg0 in restrict writable %arg2 : (tensor<?xf32>, memref<?xf32, 3>) -> ()
// CHECK: bufferization.materialize_in_destination {{.*}} : (tensor<?xf32>, tensor<5xf32>) -> tensor<5xf32>
%2 = bufferization.materialize_in_destination %arg0 in %arg4 : (tensor<?xf32>, tensor<5xf32>) -> tensor<5xf32>
return %1 : tensor<?xf32>
}
// CHECK-LABEL: func @test_dealloc_op
func.func @test_dealloc_op(%arg0: memref<2xf32>, %arg1: memref<4xi32>,
%arg2: i1, %arg3: i1, %arg4: memref<?xf32>,
%arg5: memref<*xf64>) -> (i1, i1) {
// CHECK: bufferization.dealloc (%arg0, %arg1 : memref<2xf32>, memref<4xi32>) if (%arg2, %arg3) retain (%arg4, %arg5 : memref<?xf32>, memref<*xf64>)
%0:2 = bufferization.dealloc (%arg0, %arg1 : memref<2xf32>, memref<4xi32>) if (%arg2, %arg3) retain (%arg4, %arg5 : memref<?xf32>, memref<*xf64>)
// CHECK: bufferization.dealloc (%arg0 : memref<2xf32>) if (%arg2)
bufferization.dealloc (%arg0 : memref<2xf32>) if (%arg2)
// CHECK: bufferization.dealloc
bufferization.dealloc
return %0#0, %0#1 : i1, i1
}