To run integration tests using qemu-aarch64 on x64 host, below flags are
added to the cmake command when building mlir/llvm:
-DMLIR_INCLUDE_INTEGRATION_TESTS=ON \
-DMLIR_RUN_ARM_SVE_TESTS=ON \
-DMLIR_RUN_ARM_SME_TESTS=ON \
-DARM_EMULATOR_EXECUTABLE="<...>/qemu-aarch64" \
-DARM_EMULATOR_OPTIONS="-L /usr/aarch64-linux-gnu" \
-DARM_EMULATOR_MLIR_CPU_RUNNER_EXECUTABLE="<llvm_arm64_build_top>/bin/mlir-cpu-runner-arm64"
\
-DARM_EMULATOR_LLI_EXECUTABLE="<llvm_arm64_build_top>/bin/lli" \
-DARM_EMULATOR_UTILS_LIB_DIR="<llvm_arm64_build_top>/lib"
The last three above are prebuilt on, or cross-built for, an aarch64
host.
This patch introduced substittutions of "%native_mlir_runner_utils" etc. and use
them in SVE/SME integration tests. When configured to run using qemu-aarch64,
mlir runtime util libs will be loaded from ARM_EMULATOR_UTILS_LIB_DIR, if set.
Some tests marked with 'UNSUPPORTED: target=aarch64{{.*}}' are still run
when configured with ARM_EMULATOR_EXECUTABLE and the default target is
not aarch64.
A lit config feature 'mlir_arm_emulator' is added in
mlir/test/lit.site.cfg.py.in and to UNSUPPORTED list of such tests.
125 lines
5.4 KiB
MLIR
125 lines
5.4 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{
|
|
map = (d0) -> (d0 : compressed)
|
|
}>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
|
|
}>
|
|
|
|
#Sparse3dTensor = #sparse_tensor.encoding<{
|
|
map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed)
|
|
}>
|
|
|
|
module {
|
|
|
|
func.func @reshape0(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<2x6xf64, #SparseMatrix> {
|
|
%shape = arith.constant dense <[ 2, 6 ]> : tensor<2xi32>
|
|
%0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<2xi32>) -> tensor<2x6xf64, #SparseMatrix>
|
|
return %0 : tensor<2x6xf64, #SparseMatrix>
|
|
}
|
|
|
|
func.func @reshape1(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> {
|
|
%shape = arith.constant dense <[ 12 ]> : tensor<1xi32>
|
|
%0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<1xi32>) -> tensor<12xf64, #SparseVector>
|
|
return %0 : tensor<12xf64, #SparseVector>
|
|
}
|
|
|
|
func.func @reshape2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<2x3x2xf64, #Sparse3dTensor> {
|
|
%shape = arith.constant dense <[ 2, 3, 2 ]> : tensor<3xi32>
|
|
%0 = tensor.reshape %arg0(%shape) : (tensor<3x4xf64, #SparseMatrix>, tensor<3xi32>) -> tensor<2x3x2xf64, #Sparse3dTensor>
|
|
return %0 : tensor<2x3x2xf64, #Sparse3dTensor>
|
|
}
|
|
|
|
|
|
func.func @main() {
|
|
%m = arith.constant dense <[ [ 1.1, 0.0, 1.3, 0.0 ],
|
|
[ 2.1, 0.0, 2.3, 0.0 ],
|
|
[ 3.1, 0.0, 3.3, 0.0 ]]> : tensor<3x4xf64>
|
|
%sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
|
|
|
|
%reshaped0 = call @reshape0(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<2x6xf64, #SparseMatrix>
|
|
%reshaped1 = call @reshape1(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector>
|
|
%reshaped2 = call @reshape2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<2x3x2xf64, #Sparse3dTensor>
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%df = arith.constant -1.0 : f64
|
|
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 2, 6 )
|
|
// CHECK-NEXT: lvl = ( 2, 6 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 3, 6 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 2, 4, 0, 2, 4 )
|
|
// CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 12 )
|
|
// CHECK-NEXT: lvl = ( 12 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 6 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 )
|
|
// CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 )
|
|
// CHECK-NEXT: ----
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 6
|
|
// CHECK-NEXT: dim = ( 2, 3, 2 )
|
|
// CHECK-NEXT: lvl = ( 2, 3, 2 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2 )
|
|
// CHECK-NEXT: crd[0] : ( 0, 1 )
|
|
// CHECK-NEXT: pos[1] : ( 0, 3, 6 )
|
|
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 0, 1, 2 )
|
|
// CHECK-NEXT: pos[2] : ( 0, 1, 2, 3, 4, 5, 6 )
|
|
// CHECK-NEXT: crd[2] : ( 0, 0, 0, 0, 0, 0 )
|
|
// CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 )
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %reshaped0: tensor<2x6xf64, #SparseMatrix>
|
|
sparse_tensor.print %reshaped1: tensor<12xf64, #SparseVector>
|
|
sparse_tensor.print %reshaped2: tensor<2x3x2xf64, #Sparse3dTensor>
|
|
|
|
bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %reshaped0 : tensor<2x6xf64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %reshaped1 : tensor<12xf64, #SparseVector>
|
|
bufferization.dealloc_tensor %reshaped2 : tensor<2x3x2xf64, #Sparse3dTensor>
|
|
|
|
return
|
|
}
|
|
|
|
}
|