Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir
Zhaoshi Zheng fe55c34d19 [MLIR][test] Run SVE and SME Integration tests using qemu-aarch64 (#101568)
To run integration tests using qemu-aarch64 on x64 host, below flags are
added to the cmake command when building mlir/llvm:

      -DMLIR_INCLUDE_INTEGRATION_TESTS=ON \
      -DMLIR_RUN_ARM_SVE_TESTS=ON \
      -DMLIR_RUN_ARM_SME_TESTS=ON \
      -DARM_EMULATOR_EXECUTABLE="<...>/qemu-aarch64" \
      -DARM_EMULATOR_OPTIONS="-L /usr/aarch64-linux-gnu" \

-DARM_EMULATOR_MLIR_CPU_RUNNER_EXECUTABLE="<llvm_arm64_build_top>/bin/mlir-cpu-runner-arm64"
\
      -DARM_EMULATOR_LLI_EXECUTABLE="<llvm_arm64_build_top>/bin/lli" \
      -DARM_EMULATOR_UTILS_LIB_DIR="<llvm_arm64_build_top>/lib"

The last three above are prebuilt on, or cross-built for, an aarch64
host.

This patch introduced substittutions of "%native_mlir_runner_utils" etc. and use
them in SVE/SME integration tests. When configured to run using qemu-aarch64,
mlir runtime util libs will be loaded from ARM_EMULATOR_UTILS_LIB_DIR, if set.

Some tests marked with 'UNSUPPORTED: target=aarch64{{.*}}' are still run
when configured with ARM_EMULATOR_EXECUTABLE and the default target is
not aarch64.
A lit config feature 'mlir_arm_emulator' is added in
mlir/test/lit.site.cfg.py.in and to UNSUPPORTED list of such tests.
2024-08-15 21:37:51 -07:00

109 lines
4.0 KiB
MLIR

//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// REDEFINE: %{env} = TENSOR0=%mlir_src_dir/test/Integration/data/test_symmetric.mtx
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %}
// TODO: The test currently only operates on the triangular part of the
// symmetric matrix.
!Filename = !llvm.ptr
#SparseMatrix = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed, d1 : compressed)
}>
#trait_sum_reduce = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> ()> // x (out)
],
iterator_types = ["reduction", "reduction"],
doc = "x += A(i,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that sum-reduces a matrix to a single scalar.
//
func.func @kernel_sum_reduce(%arga: tensor<?x?xf64, #SparseMatrix>,
%argx: tensor<f64>) -> tensor<f64> {
%0 = linalg.generic #trait_sum_reduce
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
outs(%argx: tensor<f64>) {
^bb(%a: f64, %x: f64):
%0 = arith.addf %x, %a : f64
linalg.yield %0 : f64
} -> tensor<f64>
return %0 : tensor<f64>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @main() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
// Setup memory for a single reduction scalar,
// initialized to zero.
%x = tensor.from_elements %d0 : tensor<f64>
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #SparseMatrix>
// Call the kernel.
%0 = call @kernel_sum_reduce(%a, %x)
: (tensor<?x?xf64, #SparseMatrix>, tensor<f64>) -> tensor<f64>
// Print the result for verification.
//
// CHECK: 24.1
//
%v = tensor.extract %0[] : tensor<f64>
vector.print %v : f64
// Release the resources.
bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
bufferization.dealloc_tensor %0 : tensor<f64>
return
}
}