When only all-dense "sparse" tensors occur in a function prototype, the assembler would skip the method conversion purely based on input/output counts. It should rewrite based on the presence of any annotation, however.
161 lines
5.7 KiB
Python
161 lines
5.7 KiB
Python
# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
|
|
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
import ctypes
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
|
|
from mlir import ir
|
|
from mlir import runtime as rt
|
|
|
|
from mlir.dialects import sparse_tensor as st
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects import func
|
|
from mlir.dialects.linalg.opdsl import lang as dsl
|
|
|
|
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(_SCRIPT_PATH)
|
|
from tools import sparsifier
|
|
|
|
|
|
@dsl.linalg_structured_op
|
|
def matmul_dsl(
|
|
A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
|
|
B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
|
|
C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True),
|
|
):
|
|
C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
|
|
|
|
|
|
def build_SpMM(attr: st.EncodingAttr):
|
|
"""Build SpMM kernel.
|
|
|
|
This method generates a linalg op with for matrix multiplication using
|
|
just the Python API. Effectively, a generic linalg op is constructed
|
|
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
|
|
"""
|
|
module = ir.Module.create()
|
|
f64 = ir.F64Type.get()
|
|
a = ir.RankedTensorType.get([3, 4], f64, attr)
|
|
b = ir.RankedTensorType.get([4, 2], f64)
|
|
c = ir.RankedTensorType.get([3, 2], f64)
|
|
arguments = [a, b, c]
|
|
with ir.InsertionPoint(module.body):
|
|
|
|
@func.FuncOp.from_py_func(*arguments)
|
|
def spMxM(*args):
|
|
return matmul_dsl(args[0], args[1], outs=[args[2]])
|
|
|
|
return module
|
|
|
|
|
|
def boilerplate(attr: st.EncodingAttr):
|
|
"""Returns boilerplate main method.
|
|
|
|
This method sets up a boilerplate main method that takes three tensors
|
|
(a, b, c), converts the first tensor a into s sparse tensor, and then
|
|
calls the sparse kernel for matrix multiplication. For convenience,
|
|
this part is purely done as string input.
|
|
"""
|
|
return f"""
|
|
func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
attributes {{ llvm.emit_c_interface }} {{
|
|
%a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
|
|
%0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
|
|
tensor<4x2xf64>,
|
|
tensor<3x2xf64>) -> tensor<3x2xf64>
|
|
return %0 : tensor<3x2xf64>
|
|
}}
|
|
"""
|
|
|
|
|
|
def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler):
|
|
# Build.
|
|
module = build_SpMM(attr)
|
|
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
|
|
module = ir.Module.parse(func + boilerplate(attr))
|
|
|
|
# Compile.
|
|
engine = compiler.compile_and_jit(module)
|
|
|
|
# Set up numpy input and buffer for output.
|
|
a = np.array(
|
|
[[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64
|
|
)
|
|
b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
|
|
c = np.zeros((3, 2), np.float64)
|
|
|
|
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
|
|
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
|
|
mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
|
|
# Allocate a MemRefDescriptor to receive the output tensor.
|
|
# The buffer itself is allocated inside the MLIR code generation.
|
|
ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
|
|
mem_out = ctypes.pointer(ctypes.pointer(ref_out))
|
|
|
|
# Invoke the kernel and get numpy output.
|
|
# Built-in bufferization uses in-out buffers.
|
|
engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
|
|
|
|
# Sanity check on computed result.
|
|
expected = np.matmul(a, b)
|
|
c = rt.ranked_memref_to_numpy(mem_out[0])
|
|
if np.allclose(c, expected):
|
|
pass
|
|
else:
|
|
quit(f"FAILURE")
|
|
|
|
|
|
def main():
|
|
support_lib = os.getenv("SUPPORT_LIB")
|
|
assert support_lib is not None, "SUPPORT_LIB is undefined"
|
|
if not os.path.exists(support_lib):
|
|
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
|
|
|
|
# CHECK-LABEL: TEST: testSpMM
|
|
print("\nTEST: testSpMM")
|
|
count = 0
|
|
with ir.Context() as ctx, ir.Location.unknown():
|
|
# Loop over various ways to compile and annotate the SpMM kernel with
|
|
# a *single* sparse tensor. Note that we deliberate do not exhaustively
|
|
# search the full state space to reduce runtime of the test. It is
|
|
# straightforward to adapt the code below to explore more combinations.
|
|
# For these simple orderings, dim2lvl and lvl2dim are the same.
|
|
vl = 1
|
|
e = False
|
|
opt = f"parallelization-strategy=none"
|
|
builder = st.EncodingAttr.build_level_type
|
|
fmt = st.LevelFormat
|
|
prop = st.LevelProperty
|
|
levels = [
|
|
[builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)],
|
|
[builder(fmt.dense), builder(fmt.dense)],
|
|
[builder(fmt.dense), builder(fmt.compressed)],
|
|
[builder(fmt.compressed), builder(fmt.dense)],
|
|
[builder(fmt.compressed), builder(fmt.compressed)],
|
|
]
|
|
orderings = [
|
|
ir.AffineMap.get_permutation([0, 1]),
|
|
ir.AffineMap.get_permutation([1, 0]),
|
|
]
|
|
bitwidths = [0]
|
|
compiler = sparsifier.Sparsifier(
|
|
extras="", options=opt, opt_level=0, shared_libs=[support_lib]
|
|
)
|
|
for level in levels:
|
|
for ordering in orderings:
|
|
for pwidth in bitwidths:
|
|
for iwidth in bitwidths:
|
|
attr = st.EncodingAttr.get(
|
|
level, ordering, ordering, pwidth, iwidth
|
|
)
|
|
build_compile_and_run_SpMM(attr, compiler)
|
|
count = count + 1
|
|
# CHECK: Passed 10 tests
|
|
print("Passed ", count, "tests")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|