Files
clang-p2996/mlir/test/Integration/Dialect/Vector/CPU/realloc.mlir
Matthias Springer eb6c4197d5 [mlir][CF] Split cf-to-llvm from func-to-llvm (#120580)
Do not run `cf-to-llvm` as part of `func-to-llvm`. This commit fixes
https://github.com/llvm/llvm-project/issues/70982.

This commit changes the way how `func.func` ops are lowered to LLVM.
Previously, the signature of the entire region (i.e., entry block and
all other blocks in the `func.func` op) was converted as part of the
`func.func` lowering pattern.

Now, only the entry block is converted. The remaining block signatures
are converted together with `cf.br` and `cf.cond_br` as part of
`cf-to-llvm`. All unstructured control flow is not converted as part of
a single pass (`cf-to-llvm`). `func-to-llvm` no longer deals with
unstructured control flow.

Also add more test cases for control flow dialect ops.

Note: This PR is in preparation of #120431, which adds an additional
GPU-specific lowering for `cf.assert`. This was a problem because
`cf.assert` used to be converted as part of `func-to-llvm`.

Note for LLVM integration: If you see failures, add
`-convert-cf-to-llvm` to your pass pipeline.
2024-12-20 13:46:45 +01:00

61 lines
2.4 KiB
MLIR

// RUN: mlir-opt %s -convert-vector-to-scf -expand-realloc -expand-strided-metadata -convert-scf-to-cf -convert-vector-to-llvm -finalize-memref-to-llvm -convert-func-to-llvm -convert-arith-to-llvm -convert-cf-to-llvm -reconcile-unrealized-casts |\
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_c_runner_utils
// RUN: mlir-opt %s -convert-vector-to-scf -expand-realloc -expand-strided-metadata -convert-scf-to-cf -convert-vector-to-llvm -finalize-memref-to-llvm='use-aligned-alloc=1' -convert-func-to-llvm -arith-expand -convert-arith-to-llvm -convert-cf-to-llvm -reconcile-unrealized-casts |\
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_c_runner_utils | FileCheck %s
// FIXME: Windows does not have aligned_alloc
// UNSUPPORTED: system-windows
func.func @entry() {
// Set up memory.
%c0 = arith.constant 0: index
%c1 = arith.constant 1: index
%c8 = arith.constant 8: index
%A = memref.alloc() : memref<8xf32>
scf.for %i = %c0 to %c8 step %c1 {
%i32 = arith.index_cast %i : index to i32
%fi = arith.sitofp %i32 : i32 to f32
memref.store %fi, %A[%i] : memref<8xf32>
}
%d0 = arith.constant -1.0 : f32
%Av = vector.transfer_read %A[%c0], %d0: memref<8xf32>, vector<8xf32>
vector.print %Av : vector<8xf32>
// CHECK: ( 0, 1, 2, 3, 4, 5, 6, 7 )
// Realloc with static sizes.
%B = memref.realloc %A : memref<8xf32> to memref<10xf32>
%c10 = arith.constant 10: index
scf.for %i = %c8 to %c10 step %c1 {
%i32 = arith.index_cast %i : index to i32
%fi = arith.sitofp %i32 : i32 to f32
memref.store %fi, %B[%i] : memref<10xf32>
}
%Bv = vector.transfer_read %B[%c0], %d0: memref<10xf32>, vector<10xf32>
vector.print %Bv : vector<10xf32>
// CHECK: ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 )
// Realloc with dynamic sizes.
%Bd = memref.cast %B : memref<10xf32> to memref<?xf32>
%c13 = arith.constant 13: index
%Cd = memref.realloc %Bd(%c13) : memref<?xf32> to memref<?xf32>
%C = memref.cast %Cd : memref<?xf32> to memref<13xf32>
scf.for %i = %c10 to %c13 step %c1 {
%i32 = arith.index_cast %i : index to i32
%fi = arith.sitofp %i32 : i32 to f32
memref.store %fi, %C[%i] : memref<13xf32>
}
%Cv = vector.transfer_read %C[%c0], %d0: memref<13xf32>, vector<13xf32>
vector.print %Cv : vector<13xf32>
// CHECK: ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 )
memref.dealloc %C : memref<13xf32>
return
}