Files
clang-p2996/mlir/test/lib/IR/TestBytecodeRoundtrip.cpp
Jeff Niu e95e94adc6 [mlir][test] Reorganize the test dialect (#89424)
This PR massively reorganizes the Test dialect's source files. It moves
manually-written op hooks into `TestOpDefs.cpp`, moves format custom
directive parsers and printers into `TestFormatUtils`, adds missing
comment blocks, and moves around where generated source files are
included for types, attributes, enums, etc. into their own source file.

This will hopefully help navigate the test dialect source code, but also
speeds up compile time of the test dialect by putting generated source
files into separate compilation units.

This also sets up the test dialect to shard its op definitions, done in
the next PR.
2024-04-22 13:42:05 -07:00

424 lines
19 KiB
C++

//===- TestBytecodeCallbacks.cpp - Pass to test bytecode callback hooks --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "TestOps.h"
#include "mlir/Bytecode/BytecodeReader.h"
#include "mlir/Bytecode/BytecodeWriter.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
using namespace mlir;
using namespace llvm;
namespace {
class TestDialectVersionParser : public cl::parser<test::TestDialectVersion> {
public:
TestDialectVersionParser(cl::Option &o)
: cl::parser<test::TestDialectVersion>(o) {}
bool parse(cl::Option &o, StringRef /*argName*/, StringRef arg,
test::TestDialectVersion &v) {
long long major, minor;
if (getAsSignedInteger(arg.split(".").first, 10, major))
return o.error("Invalid argument '" + arg);
if (getAsSignedInteger(arg.split(".").second, 10, minor))
return o.error("Invalid argument '" + arg);
v = test::TestDialectVersion(major, minor);
// Returns true on error.
return false;
}
static void print(raw_ostream &os, const test::TestDialectVersion &v) {
os << v.major_ << "." << v.minor_;
};
};
/// This is a test pass which uses callbacks to encode attributes and types in a
/// custom fashion.
struct TestBytecodeRoundtripPass
: public PassWrapper<TestBytecodeRoundtripPass, OperationPass<ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestBytecodeRoundtripPass)
StringRef getArgument() const final { return "test-bytecode-roundtrip"; }
StringRef getDescription() const final {
return "Test pass to implement bytecode roundtrip tests.";
}
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<test::TestDialect>();
}
TestBytecodeRoundtripPass() = default;
TestBytecodeRoundtripPass(const TestBytecodeRoundtripPass &) {}
LogicalResult initialize(MLIRContext *context) override {
testDialect = context->getOrLoadDialect<test::TestDialect>();
return success();
}
void runOnOperation() override {
switch (testKind) {
// Tests 0-5 implement a custom roundtrip with callbacks.
case (0):
return runTest0(getOperation());
case (1):
return runTest1(getOperation());
case (2):
return runTest2(getOperation());
case (3):
return runTest3(getOperation());
case (4):
return runTest4(getOperation());
case (5):
return runTest5(getOperation());
case (6):
// test-kind 6 is a plain roundtrip with downgrade/upgrade to/from
// `targetVersion`.
return runTest6(getOperation());
default:
llvm_unreachable("unhandled test kind for TestBytecodeCallbacks pass");
}
}
mlir::Pass::Option<test::TestDialectVersion, TestDialectVersionParser>
targetVersion{*this, "test-dialect-version",
llvm::cl::desc(
"Specifies the test dialect version to emit and parse"),
cl::init(test::TestDialectVersion())};
mlir::Pass::Option<int> testKind{
*this, "test-kind", llvm::cl::desc("Specifies the test kind to execute"),
cl::init(0)};
private:
void doRoundtripWithConfigs(Operation *op,
const BytecodeWriterConfig &writeConfig,
const ParserConfig &parseConfig) {
std::string bytecode;
llvm::raw_string_ostream os(bytecode);
if (failed(writeBytecodeToFile(op, os, writeConfig))) {
op->emitError() << "failed to write bytecode\n";
signalPassFailure();
return;
}
auto newModuleOp = parseSourceString(StringRef(bytecode), parseConfig);
if (!newModuleOp.get()) {
op->emitError() << "failed to read bytecode\n";
signalPassFailure();
return;
}
// Print the module to the output stream, so that we can filecheck the
// result.
newModuleOp->print(llvm::outs());
}
// Test0: let's assume that versions older than 2.0 were relying on a special
// integer attribute of a deprecated dialect called "funky". Assume that its
// encoding was made by two varInts, the first was the ID (999) and the second
// contained width and signedness info. We can emit it using a callback
// writing a custom encoding for the "funky" dialect group, and parse it back
// with a custom parser reading the same encoding in the same dialect group.
// Note that the ID 999 does not correspond to a valid integer type in the
// current encodings of builtin types.
void runTest0(Operation *op) {
auto newCtx = std::make_shared<MLIRContext>();
test::TestDialectVersion targetEmissionVersion = targetVersion;
BytecodeWriterConfig writeConfig;
// Set the emission version for the test dialect.
writeConfig.setDialectVersion<test::TestDialect>(
std::make_unique<test::TestDialectVersion>(targetEmissionVersion));
writeConfig.attachTypeCallback(
[&](Type entryValue, std::optional<StringRef> &dialectGroupName,
DialectBytecodeWriter &writer) -> LogicalResult {
// Do not override anything if version greater than 2.0.
auto versionOr = writer.getDialectVersion<test::TestDialect>();
assert(succeeded(versionOr) && "expected reader to be able to access "
"the version for test dialect");
const auto *version =
reinterpret_cast<const test::TestDialectVersion *>(*versionOr);
if (version->major_ >= 2)
return failure();
// For version less than 2.0, override the encoding of IntegerType.
if (auto type = llvm::dyn_cast<IntegerType>(entryValue)) {
llvm::outs() << "Overriding IntegerType encoding...\n";
dialectGroupName = StringLiteral("funky");
writer.writeVarInt(/* IntegerType */ 999);
writer.writeVarInt(type.getWidth() << 2 | type.getSignedness());
return success();
}
return failure();
});
newCtx->appendDialectRegistry(op->getContext()->getDialectRegistry());
newCtx->allowUnregisteredDialects();
ParserConfig parseConfig(newCtx.get(), /*verifyAfterParse=*/true);
parseConfig.getBytecodeReaderConfig().attachTypeCallback(
[&](DialectBytecodeReader &reader, StringRef dialectName,
Type &entry) -> LogicalResult {
// Get test dialect version from the version map.
auto versionOr = reader.getDialectVersion<test::TestDialect>();
assert(succeeded(versionOr) && "expected reader to be able to access "
"the version for test dialect");
const auto *version =
reinterpret_cast<const test::TestDialectVersion *>(*versionOr);
if (version->major_ >= 2)
return success();
// `dialectName` is the name of the group we have the opportunity to
// override. In this case, override only the dialect group "funky",
// for which does not exist in memory.
if (dialectName != StringLiteral("funky"))
return success();
uint64_t encoding;
if (failed(reader.readVarInt(encoding)) || encoding != 999)
return success();
llvm::outs() << "Overriding parsing of IntegerType encoding...\n";
uint64_t widthAndSignedness, width;
IntegerType::SignednessSemantics signedness;
if (succeeded(reader.readVarInt(widthAndSignedness)) &&
((width = widthAndSignedness >> 2), true) &&
((signedness = static_cast<IntegerType::SignednessSemantics>(
widthAndSignedness & 0x3)),
true))
entry = IntegerType::get(reader.getContext(), width, signedness);
// Return nullopt to fall through the rest of the parsing code path.
return success();
});
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
// Test1: When writing bytecode, we override the encoding of TestI32Type with
// the encoding of builtin IntegerType. We can natively parse this without
// the use of a callback, relying on the existing builtin reader mechanism.
void runTest1(Operation *op) {
auto *builtin = op->getContext()->getLoadedDialect<mlir::BuiltinDialect>();
BytecodeDialectInterface *iface =
builtin->getRegisteredInterface<BytecodeDialectInterface>();
BytecodeWriterConfig writeConfig;
writeConfig.attachTypeCallback(
[&](Type entryValue, std::optional<StringRef> &dialectGroupName,
DialectBytecodeWriter &writer) -> LogicalResult {
// Emit TestIntegerType using the builtin dialect encoding.
if (llvm::isa<test::TestI32Type>(entryValue)) {
llvm::outs() << "Overriding TestI32Type encoding...\n";
auto builtinI32Type =
IntegerType::get(op->getContext(), 32,
IntegerType::SignednessSemantics::Signless);
// Specify that this type will need to be written as part of the
// builtin group. This will override the default dialect group of
// the attribute (test).
dialectGroupName = StringLiteral("builtin");
if (succeeded(iface->writeType(builtinI32Type, writer)))
return success();
}
return failure();
});
// We natively parse the attribute as a builtin, so no callback needed.
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/true);
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
// Test2: When writing bytecode, we write standard builtin IntegerTypes. At
// parsing, we use the encoding of IntegerType to intercept all i32. Then,
// instead of creating i32s, we assemble TestI32Type and return it.
void runTest2(Operation *op) {
auto *builtin = op->getContext()->getLoadedDialect<mlir::BuiltinDialect>();
BytecodeDialectInterface *iface =
builtin->getRegisteredInterface<BytecodeDialectInterface>();
BytecodeWriterConfig writeConfig;
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/true);
parseConfig.getBytecodeReaderConfig().attachTypeCallback(
[&](DialectBytecodeReader &reader, StringRef dialectName,
Type &entry) -> LogicalResult {
if (dialectName != StringLiteral("builtin"))
return success();
Type builtinAttr = iface->readType(reader);
if (auto integerType =
llvm::dyn_cast_or_null<IntegerType>(builtinAttr)) {
if (integerType.getWidth() == 32 && integerType.isSignless()) {
llvm::outs() << "Overriding parsing of TestI32Type encoding...\n";
entry = test::TestI32Type::get(reader.getContext());
}
}
return success();
});
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
// Test3: When writing bytecode, we override the encoding of
// TestAttrParamsAttr with the encoding of builtin DenseIntElementsAttr. We
// can natively parse this without the use of a callback, relying on the
// existing builtin reader mechanism.
void runTest3(Operation *op) {
auto *builtin = op->getContext()->getLoadedDialect<mlir::BuiltinDialect>();
BytecodeDialectInterface *iface =
builtin->getRegisteredInterface<BytecodeDialectInterface>();
auto i32Type = IntegerType::get(op->getContext(), 32,
IntegerType::SignednessSemantics::Signless);
BytecodeWriterConfig writeConfig;
writeConfig.attachAttributeCallback(
[&](Attribute entryValue, std::optional<StringRef> &dialectGroupName,
DialectBytecodeWriter &writer) -> LogicalResult {
// Emit TestIntegerType using the builtin dialect encoding.
if (auto testParamAttrs =
llvm::dyn_cast<test::TestAttrParamsAttr>(entryValue)) {
llvm::outs() << "Overriding TestAttrParamsAttr encoding...\n";
// Specify that this attribute will need to be written as part of
// the builtin group. This will override the default dialect group
// of the attribute (test).
dialectGroupName = StringLiteral("builtin");
auto denseAttr = DenseIntElementsAttr::get(
RankedTensorType::get({2}, i32Type),
{testParamAttrs.getV0(), testParamAttrs.getV1()});
if (succeeded(iface->writeAttribute(denseAttr, writer)))
return success();
}
return failure();
});
// We natively parse the attribute as a builtin, so no callback needed.
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/false);
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
// Test4: When writing bytecode, we write standard builtin
// DenseIntElementsAttr. At parsing, we use the encoding of
// DenseIntElementsAttr to intercept all ElementsAttr that have shaped type of
// <2xi32>. Instead of assembling a DenseIntElementsAttr, we assemble
// TestAttrParamsAttr and return it.
void runTest4(Operation *op) {
auto *builtin = op->getContext()->getLoadedDialect<mlir::BuiltinDialect>();
BytecodeDialectInterface *iface =
builtin->getRegisteredInterface<BytecodeDialectInterface>();
auto i32Type = IntegerType::get(op->getContext(), 32,
IntegerType::SignednessSemantics::Signless);
BytecodeWriterConfig writeConfig;
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/false);
parseConfig.getBytecodeReaderConfig().attachAttributeCallback(
[&](DialectBytecodeReader &reader, StringRef dialectName,
Attribute &entry) -> LogicalResult {
// Override only the case where the return type of the builtin reader
// is an i32 and fall through on all the other cases, since we want to
// still use TestDialect normal codepath to parse the other types.
Attribute builtinAttr = iface->readAttribute(reader);
if (auto denseAttr =
llvm::dyn_cast_or_null<DenseIntElementsAttr>(builtinAttr)) {
if (denseAttr.getType().getShape() == ArrayRef<int64_t>(2) &&
denseAttr.getElementType() == i32Type) {
llvm::outs()
<< "Overriding parsing of TestAttrParamsAttr encoding...\n";
int v0 = denseAttr.getValues<IntegerAttr>()[0].getInt();
int v1 = denseAttr.getValues<IntegerAttr>()[1].getInt();
entry =
test::TestAttrParamsAttr::get(reader.getContext(), v0, v1);
}
}
return success();
});
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
// Test5: When writing bytecode, we want TestDialect to use nothing else than
// the builtin types and attributes and take full control of the encoding,
// returning failure if any type or attribute is not part of builtin.
void runTest5(Operation *op) {
auto *builtin = op->getContext()->getLoadedDialect<mlir::BuiltinDialect>();
BytecodeDialectInterface *iface =
builtin->getRegisteredInterface<BytecodeDialectInterface>();
BytecodeWriterConfig writeConfig;
writeConfig.attachAttributeCallback(
[&](Attribute attr, std::optional<StringRef> &dialectGroupName,
DialectBytecodeWriter &writer) -> LogicalResult {
return iface->writeAttribute(attr, writer);
});
writeConfig.attachTypeCallback(
[&](Type type, std::optional<StringRef> &dialectGroupName,
DialectBytecodeWriter &writer) -> LogicalResult {
return iface->writeType(type, writer);
});
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/false);
parseConfig.getBytecodeReaderConfig().attachAttributeCallback(
[&](DialectBytecodeReader &reader, StringRef dialectName,
Attribute &entry) -> LogicalResult {
Attribute builtinAttr = iface->readAttribute(reader);
if (!builtinAttr)
return failure();
entry = builtinAttr;
return success();
});
parseConfig.getBytecodeReaderConfig().attachTypeCallback(
[&](DialectBytecodeReader &reader, StringRef dialectName,
Type &entry) -> LogicalResult {
Type builtinType = iface->readType(reader);
if (!builtinType) {
return failure();
}
entry = builtinType;
return success();
});
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
LogicalResult downgradeToVersion(Operation *op,
const test::TestDialectVersion &version) {
if ((version.major_ == 2) && (version.minor_ == 0))
return success();
if (version.major_ > 2 || (version.major_ == 2 && version.minor_ > 0)) {
return op->emitError() << "current test dialect version is 2.0, "
"can't downgrade to version: "
<< version.major_ << "." << version.minor_;
}
// Prior version 2.0, the old op supported only a single attribute called
// "dimensions". We need to check that the modifier is false, otherwise we
// can't do the downgrade.
auto status = op->walk([&](test::TestVersionedOpA op) {
auto &prop = op.getProperties();
if (prop.modifier.getValue()) {
op->emitOpError() << "cannot downgrade to version " << version.major_
<< "." << version.minor_
<< " since the modifier is not compatible";
return WalkResult::interrupt();
}
llvm::outs() << "downgrading op...\n";
return WalkResult::advance();
});
return failure(status.wasInterrupted());
}
// Test6: Downgrade IR to `targetVersion`, write to bytecode. Then, read and
// upgrade IR when back in memory. The module is expected to be unmodified at
// the end of the function.
void runTest6(Operation *op) {
test::TestDialectVersion targetEmissionVersion = targetVersion;
// Downgrade IR constructs before writing the IR to bytecode.
auto status = downgradeToVersion(op, targetEmissionVersion);
assert(succeeded(status) && "expected the downgrade to succeed");
(void)status;
BytecodeWriterConfig writeConfig;
writeConfig.setDialectVersion<test::TestDialect>(
std::make_unique<test::TestDialectVersion>(targetEmissionVersion));
ParserConfig parseConfig(op->getContext(), /*verifyAfterParse=*/true);
doRoundtripWithConfigs(op, writeConfig, parseConfig);
}
test::TestDialect *testDialect;
};
} // namespace
namespace mlir {
void registerTestBytecodeRoundtripPasses() {
PassRegistration<TestBytecodeRoundtripPass>();
}
} // namespace mlir