Files
clang-p2996/mlir/lib/Conversion/StandardToLLVM/ConvertStandardToLLVM.cpp
Alex Zinenko 42b3fe8335 Make it possible to override the lowering of MemRef to the LLVM dialect. NFC.
The lowering of MemRef types to the LLVM dialect is connected to the underlying
runtime representation of structured memory buffers. It has changed several
times in the past and reached the current state of a LLVM structured-typed
descriptor containing two pointers and all sizes. In several reported use
cases, a different, often simpler, lowering scheme is required. For example,
lowering statically-shaped memrefs to bare LLVM pointers to simplify aliasing
annotation. Split the pattern population functions into those include
memref-related operations and the remaining ones. Users are expected to extend
TypeConverter::convertType to handle the memref types differently.
PiperOrigin-RevId: 286030610
2019-12-17 12:10:04 -08:00

2226 lines
90 KiB
C++

//===- ConvertStandardToLLVM.cpp - Standard to LLVM dialect conversion-----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert MLIR standard and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
#define PASS_NAME "convert-std-to-llvm"
static llvm::cl::OptionCategory
clOptionsCategory("Standard to LLVM lowering options");
static llvm::cl::opt<bool>
clUseAlloca(PASS_NAME "-use-alloca",
llvm::cl::desc("Replace emission of malloc/free by alloca"),
llvm::cl::init(false));
LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx)
: llvmDialect(ctx->getRegisteredDialect<LLVM::LLVMDialect>()) {
assert(llvmDialect && "LLVM IR dialect is not registered");
module = &llvmDialect->getLLVMModule();
}
// Get the LLVM context.
llvm::LLVMContext &LLVMTypeConverter::getLLVMContext() {
return module->getContext();
}
// Extract an LLVM IR type from the LLVM IR dialect type.
LLVM::LLVMType LLVMTypeConverter::unwrap(Type type) {
if (!type)
return nullptr;
auto *mlirContext = type.getContext();
auto wrappedLLVMType = type.dyn_cast<LLVM::LLVMType>();
if (!wrappedLLVMType)
emitError(UnknownLoc::get(mlirContext),
"conversion resulted in a non-LLVM type");
return wrappedLLVMType;
}
LLVM::LLVMType LLVMTypeConverter::getIndexType() {
return LLVM::LLVMType::getIntNTy(
llvmDialect, module->getDataLayout().getPointerSizeInBits());
}
Type LLVMTypeConverter::convertIndexType(IndexType type) {
return getIndexType();
}
Type LLVMTypeConverter::convertIntegerType(IntegerType type) {
return LLVM::LLVMType::getIntNTy(llvmDialect, type.getWidth());
}
Type LLVMTypeConverter::convertFloatType(FloatType type) {
switch (type.getKind()) {
case mlir::StandardTypes::F32:
return LLVM::LLVMType::getFloatTy(llvmDialect);
case mlir::StandardTypes::F64:
return LLVM::LLVMType::getDoubleTy(llvmDialect);
case mlir::StandardTypes::F16:
return LLVM::LLVMType::getHalfTy(llvmDialect);
case mlir::StandardTypes::BF16: {
auto *mlirContext = llvmDialect->getContext();
return emitError(UnknownLoc::get(mlirContext), "unsupported type: BF16"),
Type();
}
default:
llvm_unreachable("non-float type in convertFloatType");
}
}
// Except for signatures, MLIR function types are converted into LLVM
// pointer-to-function types.
Type LLVMTypeConverter::convertFunctionType(FunctionType type) {
SignatureConversion conversion(type.getNumInputs());
LLVM::LLVMType converted =
convertFunctionSignature(type, /*isVariadic=*/false, conversion);
return converted.getPointerTo();
}
// Function types are converted to LLVM Function types by recursively converting
// argument and result types. If MLIR Function has zero results, the LLVM
// Function has one VoidType result. If MLIR Function has more than one result,
// they are into an LLVM StructType in their order of appearance.
LLVM::LLVMType LLVMTypeConverter::convertFunctionSignature(
FunctionType type, bool isVariadic,
LLVMTypeConverter::SignatureConversion &result) {
// Convert argument types one by one and check for errors.
for (auto &en : llvm::enumerate(type.getInputs())) {
Type type = en.value();
auto converted = convertType(type).dyn_cast_or_null<LLVM::LLVMType>();
if (!converted)
return {};
if (type.isa<MemRefType>() || type.isa<UnrankedMemRefType>())
converted = converted.getPointerTo();
result.addInputs(en.index(), converted);
}
SmallVector<LLVM::LLVMType, 8> argTypes;
argTypes.reserve(llvm::size(result.getConvertedTypes()));
for (Type type : result.getConvertedTypes())
argTypes.push_back(unwrap(type));
// If function does not return anything, create the void result type,
// if it returns on element, convert it, otherwise pack the result types into
// a struct.
LLVM::LLVMType resultType =
type.getNumResults() == 0
? LLVM::LLVMType::getVoidTy(llvmDialect)
: unwrap(packFunctionResults(type.getResults()));
if (!resultType)
return {};
return LLVM::LLVMType::getFunctionTy(resultType, argTypes, isVariadic);
}
// Convert a MemRef to an LLVM type. The result is a MemRef descriptor which
// contains:
// 1. the pointer to the data buffer, followed by
// 2. a lowered `index`-type integer containing the distance between the
// beginning of the buffer and the first element to be accessed through the
// view, followed by
// 3. an array containing as many `index`-type integers as the rank of the
// MemRef: the array represents the size, in number of elements, of the memref
// along the given dimension. For constant MemRef dimensions, the
// corresponding size entry is a constant whose runtime value must match the
// static value, followed by
// 4. a second array containing as many `index`-type integers as the rank of
// the MemRef: the second array represents the "stride" (in tensor abstraction
// sense), i.e. the number of consecutive elements of the underlying buffer.
// TODO(ntv, zinenko): add assertions for the static cases.
//
// template <typename Elem, size_t Rank>
// struct {
// Elem *allocatedPtr;
// Elem *alignedPtr;
// int64_t offset;
// int64_t sizes[Rank]; // omitted when rank == 0
// int64_t strides[Rank]; // omitted when rank == 0
// };
static constexpr unsigned kAllocatedPtrPosInMemRefDescriptor = 0;
static constexpr unsigned kAlignedPtrPosInMemRefDescriptor = 1;
static constexpr unsigned kOffsetPosInMemRefDescriptor = 2;
static constexpr unsigned kSizePosInMemRefDescriptor = 3;
static constexpr unsigned kStridePosInMemRefDescriptor = 4;
Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
int64_t offset;
SmallVector<int64_t, 4> strides;
bool strideSuccess = succeeded(getStridesAndOffset(type, strides, offset));
assert(strideSuccess &&
"Non-strided layout maps must have been normalized away");
(void)strideSuccess;
LLVM::LLVMType elementType = unwrap(convertType(type.getElementType()));
if (!elementType)
return {};
auto ptrTy = elementType.getPointerTo(type.getMemorySpace());
auto indexTy = getIndexType();
auto rank = type.getRank();
if (rank > 0) {
auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, type.getRank());
return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy, arrayTy, arrayTy);
}
return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy);
}
// Converts UnrankedMemRefType to LLVMType. The result is a descriptor which
// contains:
// 1. int64_t rank, the dynamic rank of this MemRef
// 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be
// stack allocated (alloca) copy of a MemRef descriptor that got casted to
// be unranked.
static constexpr unsigned kRankInUnrankedMemRefDescriptor = 0;
static constexpr unsigned kPtrInUnrankedMemRefDescriptor = 1;
Type LLVMTypeConverter::convertUnrankedMemRefType(UnrankedMemRefType type) {
auto rankTy = LLVM::LLVMType::getInt64Ty(llvmDialect);
auto ptrTy = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
return LLVM::LLVMType::getStructTy(rankTy, ptrTy);
}
// Convert an n-D vector type to an LLVM vector type via (n-1)-D array type when
// n > 1.
// For example, `vector<4 x f32>` converts to `!llvm.type<"<4 x float>">` and
// `vector<4 x 8 x 16 f32>` converts to `!llvm<"[4 x [8 x <16 x float>]]">`.
Type LLVMTypeConverter::convertVectorType(VectorType type) {
auto elementType = unwrap(convertType(type.getElementType()));
if (!elementType)
return {};
auto vectorType =
LLVM::LLVMType::getVectorTy(elementType, type.getShape().back());
auto shape = type.getShape();
for (int i = shape.size() - 2; i >= 0; --i)
vectorType = LLVM::LLVMType::getArrayTy(vectorType, shape[i]);
return vectorType;
}
// Dispatch based on the actual type. Return null type on error.
Type LLVMTypeConverter::convertStandardType(Type type) {
if (auto funcType = type.dyn_cast<FunctionType>())
return convertFunctionType(funcType);
if (auto intType = type.dyn_cast<IntegerType>())
return convertIntegerType(intType);
if (auto floatType = type.dyn_cast<FloatType>())
return convertFloatType(floatType);
if (auto indexType = type.dyn_cast<IndexType>())
return convertIndexType(indexType);
if (auto memRefType = type.dyn_cast<MemRefType>())
return convertMemRefType(memRefType);
if (auto memRefType = type.dyn_cast<UnrankedMemRefType>())
return convertUnrankedMemRefType(memRefType);
if (auto vectorType = type.dyn_cast<VectorType>())
return convertVectorType(vectorType);
if (auto llvmType = type.dyn_cast<LLVM::LLVMType>())
return llvmType;
return {};
}
LLVMOpLowering::LLVMOpLowering(StringRef rootOpName, MLIRContext *context,
LLVMTypeConverter &lowering_,
PatternBenefit benefit)
: ConversionPattern(rootOpName, benefit, context), lowering(lowering_) {}
/*============================================================================*/
/* StructBuilder implementation */
/*============================================================================*/
StructBuilder::StructBuilder(Value *v) : value(v) {
assert(value != nullptr && "value cannot be null");
structType = value->getType().cast<LLVM::LLVMType>();
}
Value *StructBuilder::extractPtr(OpBuilder &builder, Location loc,
unsigned pos) {
Type type = structType.cast<LLVM::LLVMType>().getStructElementType(pos);
return builder.create<LLVM::ExtractValueOp>(loc, type, value,
builder.getI64ArrayAttr(pos));
}
void StructBuilder::setPtr(OpBuilder &builder, Location loc, unsigned pos,
Value *ptr) {
value = builder.create<LLVM::InsertValueOp>(loc, structType, value, ptr,
builder.getI64ArrayAttr(pos));
}
/*============================================================================*/
/* MemRefDescriptor implementation */
/*============================================================================*/
/// Construct a helper for the given descriptor value.
MemRefDescriptor::MemRefDescriptor(Value *descriptor)
: StructBuilder(descriptor) {
assert(value != nullptr && "value cannot be null");
indexType = value->getType().cast<LLVM::LLVMType>().getStructElementType(
kOffsetPosInMemRefDescriptor);
}
/// Builds IR creating an `undef` value of the descriptor type.
MemRefDescriptor MemRefDescriptor::undef(OpBuilder &builder, Location loc,
Type descriptorType) {
Value *descriptor =
builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>());
return MemRefDescriptor(descriptor);
}
/// Builds IR creating a MemRef descriptor that represents `type` and
/// populates it with static shape and stride information extracted from the
/// type.
MemRefDescriptor
MemRefDescriptor::fromStaticShape(OpBuilder &builder, Location loc,
LLVMTypeConverter &typeConverter,
MemRefType type, Value *memory) {
assert(type.hasStaticShape() && "unexpected dynamic shape");
assert(type.getAffineMaps().empty() && "unexpected layout map");
auto convertedType = typeConverter.convertType(type);
assert(convertedType && "unexpected failure in memref type conversion");
auto descr = MemRefDescriptor::undef(builder, loc, convertedType);
descr.setAllocatedPtr(builder, loc, memory);
descr.setAlignedPtr(builder, loc, memory);
descr.setConstantOffset(builder, loc, 0);
// Fill in sizes and strides, in reverse order to simplify stride
// calculation.
uint64_t runningStride = 1;
for (unsigned i = type.getRank(); i > 0; --i) {
unsigned dim = i - 1;
descr.setConstantSize(builder, loc, dim, type.getDimSize(dim));
descr.setConstantStride(builder, loc, dim, runningStride);
runningStride *= type.getDimSize(dim);
}
return descr;
}
/// Builds IR extracting the allocated pointer from the descriptor.
Value *MemRefDescriptor::allocatedPtr(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor);
}
/// Builds IR inserting the allocated pointer into the descriptor.
void MemRefDescriptor::setAllocatedPtr(OpBuilder &builder, Location loc,
Value *ptr) {
setPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor, ptr);
}
/// Builds IR extracting the aligned pointer from the descriptor.
Value *MemRefDescriptor::alignedPtr(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor);
}
/// Builds IR inserting the aligned pointer into the descriptor.
void MemRefDescriptor::setAlignedPtr(OpBuilder &builder, Location loc,
Value *ptr) {
setPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor, ptr);
}
// Creates a constant Op producing a value of `resultType` from an index-typed
// integer attribute.
static Value *createIndexAttrConstant(OpBuilder &builder, Location loc,
Type resultType, int64_t value) {
return builder.create<LLVM::ConstantOp>(
loc, resultType, builder.getIntegerAttr(builder.getIndexType(), value));
}
/// Builds IR extracting the offset from the descriptor.
Value *MemRefDescriptor::offset(OpBuilder &builder, Location loc) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor));
}
/// Builds IR inserting the offset into the descriptor.
void MemRefDescriptor::setOffset(OpBuilder &builder, Location loc,
Value *offset) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, offset,
builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor));
}
/// Builds IR inserting the offset into the descriptor.
void MemRefDescriptor::setConstantOffset(OpBuilder &builder, Location loc,
uint64_t offset) {
setOffset(builder, loc,
createIndexAttrConstant(builder, loc, indexType, offset));
}
/// Builds IR extracting the pos-th size from the descriptor.
Value *MemRefDescriptor::size(OpBuilder &builder, Location loc, unsigned pos) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th size into the descriptor
void MemRefDescriptor::setSize(OpBuilder &builder, Location loc, unsigned pos,
Value *size) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, size,
builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th size into the descriptor
void MemRefDescriptor::setConstantSize(OpBuilder &builder, Location loc,
unsigned pos, uint64_t size) {
setSize(builder, loc, pos,
createIndexAttrConstant(builder, loc, indexType, size));
}
/// Builds IR extracting the pos-th size from the descriptor.
Value *MemRefDescriptor::stride(OpBuilder &builder, Location loc,
unsigned pos) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th stride into the descriptor
void MemRefDescriptor::setStride(OpBuilder &builder, Location loc, unsigned pos,
Value *stride) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, stride,
builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th stride into the descriptor
void MemRefDescriptor::setConstantStride(OpBuilder &builder, Location loc,
unsigned pos, uint64_t stride) {
setStride(builder, loc, pos,
createIndexAttrConstant(builder, loc, indexType, stride));
}
LLVM::LLVMType MemRefDescriptor::getElementType() {
return value->getType().cast<LLVM::LLVMType>().getStructElementType(
kAlignedPtrPosInMemRefDescriptor);
}
/*============================================================================*/
/* UnrankedMemRefDescriptor implementation */
/*============================================================================*/
/// Construct a helper for the given descriptor value.
UnrankedMemRefDescriptor::UnrankedMemRefDescriptor(Value *descriptor)
: StructBuilder(descriptor) {}
/// Builds IR creating an `undef` value of the descriptor type.
UnrankedMemRefDescriptor UnrankedMemRefDescriptor::undef(OpBuilder &builder,
Location loc,
Type descriptorType) {
Value *descriptor =
builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>());
return UnrankedMemRefDescriptor(descriptor);
}
Value *UnrankedMemRefDescriptor::rank(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kRankInUnrankedMemRefDescriptor);
}
void UnrankedMemRefDescriptor::setRank(OpBuilder &builder, Location loc,
Value *v) {
setPtr(builder, loc, kRankInUnrankedMemRefDescriptor, v);
}
Value *UnrankedMemRefDescriptor::memRefDescPtr(OpBuilder &builder,
Location loc) {
return extractPtr(builder, loc, kPtrInUnrankedMemRefDescriptor);
}
void UnrankedMemRefDescriptor::setMemRefDescPtr(OpBuilder &builder,
Location loc, Value *v) {
setPtr(builder, loc, kPtrInUnrankedMemRefDescriptor, v);
}
namespace {
// Base class for Standard to LLVM IR op conversions. Matches the Op type
// provided as template argument. Carries a reference to the LLVM dialect in
// case it is necessary for rewriters.
template <typename SourceOp>
class LLVMLegalizationPattern : public LLVMOpLowering {
public:
// Construct a conversion pattern.
explicit LLVMLegalizationPattern(LLVM::LLVMDialect &dialect_,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(SourceOp::getOperationName(), dialect_.getContext(),
lowering_),
dialect(dialect_) {}
// Get the LLVM IR dialect.
LLVM::LLVMDialect &getDialect() const { return dialect; }
// Get the LLVM context.
llvm::LLVMContext &getContext() const { return dialect.getLLVMContext(); }
// Get the LLVM module in which the types are constructed.
llvm::Module &getModule() const { return dialect.getLLVMModule(); }
// Get the MLIR type wrapping the LLVM integer type whose bit width is defined
// by the pointer size used in the LLVM module.
LLVM::LLVMType getIndexType() const {
return LLVM::LLVMType::getIntNTy(
&dialect, getModule().getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getVoidType() const {
return LLVM::LLVMType::getVoidTy(&dialect);
}
// Get the MLIR type wrapping the LLVM i8* type.
LLVM::LLVMType getVoidPtrType() const {
return LLVM::LLVMType::getInt8PtrTy(&dialect);
}
// Create an LLVM IR pseudo-operation defining the given index constant.
Value *createIndexConstant(ConversionPatternRewriter &builder, Location loc,
uint64_t value) const {
return createIndexAttrConstant(builder, loc, getIndexType(), value);
}
protected:
LLVM::LLVMDialect &dialect;
};
struct FuncOpConversion : public LLVMLegalizationPattern<FuncOp> {
using LLVMLegalizationPattern<FuncOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto funcOp = cast<FuncOp>(op);
FunctionType type = funcOp.getType();
// Store the positions of memref-typed arguments so that we can emit loads
// from them to follow the calling convention.
SmallVector<unsigned, 4> promotedArgIndices;
promotedArgIndices.reserve(type.getNumInputs());
for (auto en : llvm::enumerate(type.getInputs())) {
if (en.value().isa<MemRefType>() || en.value().isa<UnrankedMemRefType>())
promotedArgIndices.push_back(en.index());
}
// Convert the original function arguments. Struct arguments are promoted to
// pointer to struct arguments to allow calling external functions with
// various ABIs (e.g. compiled from C/C++ on platform X).
auto varargsAttr = funcOp.getAttrOfType<BoolAttr>("std.varargs");
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
auto llvmType = lowering.convertFunctionSignature(
funcOp.getType(), varargsAttr && varargsAttr.getValue(), result);
// Only retain those attributes that are not constructed by build.
SmallVector<NamedAttribute, 4> attributes;
for (const auto &attr : funcOp.getAttrs()) {
if (attr.first.is(SymbolTable::getSymbolAttrName()) ||
attr.first.is(impl::getTypeAttrName()) ||
attr.first.is("std.varargs"))
continue;
attributes.push_back(attr);
}
// Create an LLVM function, use external linkage by default until MLIR
// functions have linkage.
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
op->getLoc(), funcOp.getName(), llvmType, LLVM::Linkage::External,
attributes);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
// Tell the rewriter to convert the region signature.
rewriter.applySignatureConversion(&newFuncOp.getBody(), result);
// Insert loads from memref descriptor pointers in function bodies.
if (!newFuncOp.getBody().empty()) {
Block *firstBlock = &newFuncOp.getBody().front();
rewriter.setInsertionPoint(firstBlock, firstBlock->begin());
for (unsigned idx : promotedArgIndices) {
BlockArgument *arg = firstBlock->getArgument(idx);
Value *loaded = rewriter.create<LLVM::LoadOp>(funcOp.getLoc(), arg);
rewriter.replaceUsesOfBlockArgument(arg, loaded);
}
}
rewriter.eraseOp(op);
return matchSuccess();
}
};
//////////////// Support for Lowering operations on n-D vectors ////////////////
namespace {
// Helper struct to "unroll" operations on n-D vectors in terms of operations on
// 1-D LLVM vectors.
struct NDVectorTypeInfo {
// LLVM array struct which encodes n-D vectors.
LLVM::LLVMType llvmArrayTy;
// LLVM vector type which encodes the inner 1-D vector type.
LLVM::LLVMType llvmVectorTy;
// Multiplicity of llvmArrayTy to llvmVectorTy.
SmallVector<int64_t, 4> arraySizes;
};
} // namespace
// For >1-D vector types, extracts the necessary information to iterate over all
// 1-D subvectors in the underlying llrepresentation of the n-D vector
// Iterates on the llvm array type until we hit a non-array type (which is
// asserted to be an llvm vector type).
static NDVectorTypeInfo extractNDVectorTypeInfo(VectorType vectorType,
LLVMTypeConverter &converter) {
assert(vectorType.getRank() > 1 && "expected >1D vector type");
NDVectorTypeInfo info;
info.llvmArrayTy =
converter.convertType(vectorType).dyn_cast<LLVM::LLVMType>();
if (!info.llvmArrayTy)
return info;
info.arraySizes.reserve(vectorType.getRank() - 1);
auto llvmTy = info.llvmArrayTy;
while (llvmTy.isArrayTy()) {
info.arraySizes.push_back(llvmTy.getArrayNumElements());
llvmTy = llvmTy.getArrayElementType();
}
if (!llvmTy.isVectorTy())
return info;
info.llvmVectorTy = llvmTy;
return info;
}
// Express `linearIndex` in terms of coordinates of `basis`.
// Returns the empty vector when linearIndex is out of the range [0, P] where
// P is the product of all the basis coordinates.
//
// Prerequisites:
// Basis is an array of nonnegative integers (signed type inherited from
// vector shape type).
static SmallVector<int64_t, 4> getCoordinates(ArrayRef<int64_t> basis,
unsigned linearIndex) {
SmallVector<int64_t, 4> res;
res.reserve(basis.size());
for (unsigned basisElement : llvm::reverse(basis)) {
res.push_back(linearIndex % basisElement);
linearIndex = linearIndex / basisElement;
}
if (linearIndex > 0)
return {};
std::reverse(res.begin(), res.end());
return res;
}
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
template <typename Lambda>
void nDVectorIterate(const NDVectorTypeInfo &info, OpBuilder &builder,
Lambda fun) {
unsigned ub = 1;
for (auto s : info.arraySizes)
ub *= s;
for (unsigned linearIndex = 0; linearIndex < ub; ++linearIndex) {
auto coords = getCoordinates(info.arraySizes, linearIndex);
// Linear index is out of bounds, we are done.
if (coords.empty())
break;
assert(coords.size() == info.arraySizes.size());
auto position = builder.getI64ArrayAttr(coords);
fun(position);
}
}
////////////// End Support for Lowering operations on n-D vectors //////////////
// Basic lowering implementation for one-to-one rewriting from Standard Ops to
// LLVM Dialect Ops.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = OneToOneLLVMOpLowering<SourceOp, TargetOp>;
// Convert the type of the result to an LLVM type, pass operands as is,
// preserve attributes.
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
unsigned numResults = op->getNumResults();
Type packedType;
if (numResults != 0) {
packedType = this->lowering.packFunctionResults(
llvm::to_vector<4>(op->getResultTypes()));
if (!packedType)
return this->matchFailure();
}
auto newOp = rewriter.create<TargetOp>(op->getLoc(), packedType, operands,
op->getAttrs());
// If the operation produced 0 or 1 result, return them immediately.
if (numResults == 0)
return rewriter.eraseOp(op), this->matchSuccess();
if (numResults == 1)
return rewriter.replaceOp(op, newOp.getOperation()->getResult(0)),
this->matchSuccess();
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
SmallVector<Value *, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
auto type = this->lowering.convertType(op->getResult(i)->getType());
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
op->getLoc(), type, newOp.getOperation()->getResult(0),
rewriter.getI64ArrayAttr(i)));
}
rewriter.replaceOp(op, results);
return this->matchSuccess();
}
};
template <typename SourceOp, unsigned OpCount> struct OpCountValidator {
static_assert(
std::is_base_of<
typename OpTrait::NOperands<OpCount>::template Impl<SourceOp>,
SourceOp>::value,
"wrong operand count");
};
template <typename SourceOp> struct OpCountValidator<SourceOp, 1> {
static_assert(std::is_base_of<OpTrait::OneOperand<SourceOp>, SourceOp>::value,
"expected a single operand");
};
template <typename SourceOp, unsigned OpCount> void ValidateOpCount() {
OpCountValidator<SourceOp, OpCount>();
}
// Basic lowering implementation for rewriting from Standard Ops to LLVM Dialect
// Ops for N-ary ops with one result. This supports higher-dimensional vector
// types.
template <typename SourceOp, typename TargetOp, unsigned OpCount>
struct NaryOpLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = NaryOpLLVMOpLowering<SourceOp, TargetOp, OpCount>;
// Convert the type of the result to an LLVM type, pass operands as is,
// preserve attributes.
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
ValidateOpCount<SourceOp, OpCount>();
static_assert(
std::is_base_of<OpTrait::OneResult<SourceOp>, SourceOp>::value,
"expected single result op");
static_assert(std::is_base_of<OpTrait::SameOperandsAndResultType<SourceOp>,
SourceOp>::value,
"expected same operands and result type");
// Cannot convert ops if their operands are not of LLVM type.
for (Value *operand : operands) {
if (!operand || !operand->getType().isa<LLVM::LLVMType>())
return this->matchFailure();
}
auto loc = op->getLoc();
auto llvmArrayTy = operands[0]->getType().cast<LLVM::LLVMType>();
if (!llvmArrayTy.isArrayTy()) {
auto newOp = rewriter.create<TargetOp>(
op->getLoc(), operands[0]->getType(), operands, op->getAttrs());
rewriter.replaceOp(op, newOp.getResult());
return this->matchSuccess();
}
auto vectorType = op->getResult(0)->getType().dyn_cast<VectorType>();
if (!vectorType)
return this->matchFailure();
auto vectorTypeInfo = extractNDVectorTypeInfo(vectorType, this->lowering);
auto llvmVectorTy = vectorTypeInfo.llvmVectorTy;
if (!llvmVectorTy || llvmArrayTy != vectorTypeInfo.llvmArrayTy)
return this->matchFailure();
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy);
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) {
// For this unrolled `position` corresponding to the `linearIndex`^th
// element, extract operand vectors
SmallVector<Value *, OpCount> extractedOperands;
for (unsigned i = 0; i < OpCount; ++i) {
extractedOperands.push_back(rewriter.create<LLVM::ExtractValueOp>(
loc, llvmVectorTy, operands[i], position));
}
Value *newVal = rewriter.create<TargetOp>(
loc, llvmVectorTy, extractedOperands, op->getAttrs());
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc,
newVal, position);
});
rewriter.replaceOp(op, desc);
return this->matchSuccess();
}
};
template <typename SourceOp, typename TargetOp>
using UnaryOpLLVMOpLowering = NaryOpLLVMOpLowering<SourceOp, TargetOp, 1>;
template <typename SourceOp, typename TargetOp>
using BinaryOpLLVMOpLowering = NaryOpLLVMOpLowering<SourceOp, TargetOp, 2>;
// Specific lowerings.
// FIXME: this should be tablegen'ed.
struct ExpOpLowering : public UnaryOpLLVMOpLowering<ExpOp, LLVM::ExpOp> {
using Super::Super;
};
struct LogOpLowering : public UnaryOpLLVMOpLowering<LogOp, LLVM::LogOp> {
using Super::Super;
};
struct Log10OpLowering : public UnaryOpLLVMOpLowering<Log10Op, LLVM::Log10Op> {
using Super::Super;
};
struct Log2OpLowering : public UnaryOpLLVMOpLowering<Log2Op, LLVM::Log2Op> {
using Super::Super;
};
struct AddIOpLowering : public BinaryOpLLVMOpLowering<AddIOp, LLVM::AddOp> {
using Super::Super;
};
struct SubIOpLowering : public BinaryOpLLVMOpLowering<SubIOp, LLVM::SubOp> {
using Super::Super;
};
struct MulIOpLowering : public BinaryOpLLVMOpLowering<MulIOp, LLVM::MulOp> {
using Super::Super;
};
struct DivISOpLowering : public BinaryOpLLVMOpLowering<DivISOp, LLVM::SDivOp> {
using Super::Super;
};
struct DivIUOpLowering : public BinaryOpLLVMOpLowering<DivIUOp, LLVM::UDivOp> {
using Super::Super;
};
struct RemISOpLowering : public BinaryOpLLVMOpLowering<RemISOp, LLVM::SRemOp> {
using Super::Super;
};
struct RemIUOpLowering : public BinaryOpLLVMOpLowering<RemIUOp, LLVM::URemOp> {
using Super::Super;
};
struct AndOpLowering : public BinaryOpLLVMOpLowering<AndOp, LLVM::AndOp> {
using Super::Super;
};
struct OrOpLowering : public BinaryOpLLVMOpLowering<OrOp, LLVM::OrOp> {
using Super::Super;
};
struct XOrOpLowering : public BinaryOpLLVMOpLowering<XOrOp, LLVM::XOrOp> {
using Super::Super;
};
struct AddFOpLowering : public BinaryOpLLVMOpLowering<AddFOp, LLVM::FAddOp> {
using Super::Super;
};
struct SubFOpLowering : public BinaryOpLLVMOpLowering<SubFOp, LLVM::FSubOp> {
using Super::Super;
};
struct MulFOpLowering : public BinaryOpLLVMOpLowering<MulFOp, LLVM::FMulOp> {
using Super::Super;
};
struct DivFOpLowering : public BinaryOpLLVMOpLowering<DivFOp, LLVM::FDivOp> {
using Super::Super;
};
struct RemFOpLowering : public BinaryOpLLVMOpLowering<RemFOp, LLVM::FRemOp> {
using Super::Super;
};
struct SelectOpLowering
: public OneToOneLLVMOpLowering<SelectOp, LLVM::SelectOp> {
using Super::Super;
};
struct ConstLLVMOpLowering
: public OneToOneLLVMOpLowering<ConstantOp, LLVM::ConstantOp> {
using Super::Super;
};
// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
static bool isSupportedMemRefType(MemRefType type) {
return type.getAffineMaps().empty() ||
llvm::all_of(type.getAffineMaps(),
[](AffineMap map) { return map.isIdentity(); });
}
// An `alloc` is converted into a definition of a memref descriptor value and
// a call to `malloc` to allocate the underlying data buffer. The memref
// descriptor is of the LLVM structure type where:
// 1. the first element is a pointer to the allocated (typed) data buffer,
// 2. the second element is a pointer to the (typed) payload, aligned to the
// specified alignment,
// 3. the remaining elements serve to store all the sizes and strides of the
// memref using LLVM-converted `index` type.
//
// Alignment is obtained by allocating `alignment - 1` more bytes than requested
// and shifting the aligned pointer relative to the allocated memory. If
// alignment is unspecified, the two pointers are equal.
struct AllocOpLowering : public LLVMLegalizationPattern<AllocOp> {
using LLVMLegalizationPattern<AllocOp>::LLVMLegalizationPattern;
AllocOpLowering(LLVM::LLVMDialect &dialect_, LLVMTypeConverter &converter,
bool useAlloca = false)
: LLVMLegalizationPattern<AllocOp>(dialect_, converter),
useAlloca(useAlloca) {}
PatternMatchResult match(Operation *op) const override {
MemRefType type = cast<AllocOp>(op).getType();
if (isSupportedMemRefType(type))
return matchSuccess();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
if (failed(successStrides))
return matchFailure();
// Dynamic strides are ok if they can be deduced from dynamic sizes (which
// is guaranteed when succeeded(successStrides)). Dynamic offset however can
// never be alloc'ed.
if (offset == MemRefType::getDynamicStrideOrOffset())
return matchFailure();
return matchSuccess();
}
void rewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto allocOp = cast<AllocOp>(op);
MemRefType type = allocOp.getType();
// Get actual sizes of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands. In case of
// zero-dimensional memref, assume a scalar (size 1).
SmallVector<Value *, 4> sizes;
sizes.reserve(type.getRank());
unsigned i = 0;
for (int64_t s : type.getShape())
sizes.push_back(s == -1 ? operands[i++]
: createIndexConstant(rewriter, loc, s));
if (sizes.empty())
sizes.push_back(createIndexConstant(rewriter, loc, 1));
// Compute the total number of memref elements.
Value *cumulativeSize = sizes.front();
for (unsigned i = 1, e = sizes.size(); i < e; ++i)
cumulativeSize = rewriter.create<LLVM::MulOp>(
loc, getIndexType(), ArrayRef<Value *>{cumulativeSize, sizes[i]});
// Compute the size of an individual element. This emits the MLIR equivalent
// of the following sizeof(...) implementation in LLVM IR:
// %0 = getelementptr %elementType* null, %indexType 1
// %1 = ptrtoint %elementType* %0 to %indexType
// which is a common pattern of getting the size of a type in bytes.
auto elementType = type.getElementType();
auto convertedPtrType =
lowering.convertType(elementType).cast<LLVM::LLVMType>().getPointerTo();
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
auto one = createIndexConstant(rewriter, loc, 1);
auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType,
ArrayRef<Value *>{nullPtr, one});
auto elementSize =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
cumulativeSize = rewriter.create<LLVM::MulOp>(
loc, getIndexType(), ArrayRef<Value *>{cumulativeSize, elementSize});
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Value *allocated = nullptr;
int alignment = 0;
Value *alignmentValue = nullptr;
if (auto alignAttr = allocOp.alignment())
alignment = alignAttr.getValue().getSExtValue();
if (useAlloca) {
allocated = rewriter.create<LLVM::AllocaOp>(loc, getVoidPtrType(),
cumulativeSize, alignment);
} else {
// Insert the `malloc` declaration if it is not already present.
auto module = op->getParentOfType<ModuleOp>();
auto mallocFunc = module.lookupSymbol<LLVM::LLVMFuncOp>("malloc");
if (!mallocFunc) {
OpBuilder moduleBuilder(
op->getParentOfType<ModuleOp>().getBodyRegion());
mallocFunc = moduleBuilder.create<LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "malloc",
LLVM::LLVMType::getFunctionTy(getVoidPtrType(), getIndexType(),
/*isVarArg=*/false));
}
if (alignment != 0) {
alignmentValue = createIndexConstant(rewriter, loc, alignment);
cumulativeSize = rewriter.create<LLVM::SubOp>(
loc,
rewriter.create<LLVM::AddOp>(loc, cumulativeSize, alignmentValue),
one);
}
allocated = rewriter
.create<LLVM::CallOp>(
loc, getVoidPtrType(),
rewriter.getSymbolRefAttr(mallocFunc), cumulativeSize)
.getResult(0);
}
auto structElementType = lowering.convertType(elementType);
auto elementPtrType = structElementType.cast<LLVM::LLVMType>().getPointerTo(
type.getMemorySpace());
Value *bitcastAllocated = rewriter.create<LLVM::BitcastOp>(
loc, elementPtrType, ArrayRef<Value *>(allocated));
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
assert(succeeded(successStrides) && "unexpected non-strided memref");
(void)successStrides;
assert(offset != MemRefType::getDynamicStrideOrOffset() &&
"unexpected dynamic offset");
// 0-D memref corner case: they have size 1 ...
assert(((type.getRank() == 0 && strides.empty() && sizes.size() == 1) ||
(strides.size() == sizes.size())) &&
"unexpected number of strides");
// Create the MemRef descriptor.
auto structType = lowering.convertType(type);
auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);
// Field 1: Allocated pointer, used for malloc/free.
memRefDescriptor.setAllocatedPtr(rewriter, loc, bitcastAllocated);
// Field 2: Actual aligned pointer to payload.
Value *bitcastAligned = bitcastAllocated;
if (!useAlloca && alignment != 0) {
assert(alignmentValue);
// offset = (align - (ptr % align))% align
Value *intVal = rewriter.create<LLVM::PtrToIntOp>(
loc, this->getIndexType(), allocated);
Value *ptrModAlign =
rewriter.create<LLVM::URemOp>(loc, intVal, alignmentValue);
Value *subbed =
rewriter.create<LLVM::SubOp>(loc, alignmentValue, ptrModAlign);
Value *offset =
rewriter.create<LLVM::URemOp>(loc, subbed, alignmentValue);
Value *aligned = rewriter.create<LLVM::GEPOp>(loc, allocated->getType(),
allocated, offset);
bitcastAligned = rewriter.create<LLVM::BitcastOp>(
loc, elementPtrType, ArrayRef<Value *>(aligned));
}
memRefDescriptor.setAlignedPtr(rewriter, loc, bitcastAligned);
// Field 3: Offset in aligned pointer.
memRefDescriptor.setOffset(rewriter, loc,
createIndexConstant(rewriter, loc, offset));
if (type.getRank() == 0)
// No size/stride descriptor in memref, return the descriptor value.
return rewriter.replaceOp(op, {memRefDescriptor});
// Fields 4 and 5: Sizes and strides of the strided MemRef.
// Store all sizes in the descriptor. Only dynamic sizes are passed in as
// operands to AllocOp.
Value *runningStride = nullptr;
// Iterate strides in reverse order, compute runningStride and strideValues.
auto nStrides = strides.size();
SmallVector<Value *, 4> strideValues(nStrides, nullptr);
for (auto indexedStride : llvm::enumerate(llvm::reverse(strides))) {
int64_t index = nStrides - 1 - indexedStride.index();
if (strides[index] == MemRefType::getDynamicStrideOrOffset())
// Identity layout map is enforced in the match function, so we compute:
// `runningStride *= sizes[index]`
runningStride =
runningStride
? rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[index])
: createIndexConstant(rewriter, loc, 1);
else
runningStride = createIndexConstant(rewriter, loc, strides[index]);
strideValues[index] = runningStride;
}
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(sizes)) {
int64_t index = indexedSize.index();
memRefDescriptor.setSize(rewriter, loc, index, indexedSize.value());
memRefDescriptor.setStride(rewriter, loc, index, strideValues[index]);
}
// Return the final value of the descriptor.
rewriter.replaceOp(op, {memRefDescriptor});
}
bool useAlloca;
};
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public LLVMLegalizationPattern<CallOpType> {
using LLVMLegalizationPattern<CallOpType>::LLVMLegalizationPattern;
using Super = CallOpInterfaceLowering<CallOpType>;
using Base = LLVMLegalizationPattern<CallOpType>;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
OperandAdaptor<CallOpType> transformed(operands);
auto callOp = cast<CallOpType>(op);
// Pack the result types into a struct.
Type packedResult;
unsigned numResults = callOp.getNumResults();
auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
for (Type resType : resultTypes) {
assert(!resType.isa<UnrankedMemRefType>() &&
"Returning unranked memref is not supported. Pass result as an"
"argument instead.");
(void)resType;
}
if (numResults != 0) {
if (!(packedResult = this->lowering.packFunctionResults(resultTypes)))
return this->matchFailure();
}
auto promoted = this->lowering.promoteMemRefDescriptors(
op->getLoc(), /*opOperands=*/op->getOperands(), operands, rewriter);
auto newOp = rewriter.create<LLVM::CallOp>(op->getLoc(), packedResult,
promoted, op->getAttrs());
// If < 2 results, packing did not do anything and we can just return.
if (numResults < 2) {
rewriter.replaceOp(op, newOp.getResults());
return this->matchSuccess();
}
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
// TODO(aminim, ntv, riverriddle, zinenko): this seems like patching around
// a particular interaction between MemRefType and CallOp lowering. Find a
// way to avoid special casing.
SmallVector<Value *, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
auto type = this->lowering.convertType(op->getResult(i)->getType());
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
op->getLoc(), type, newOp.getOperation()->getResult(0),
rewriter.getI64ArrayAttr(i)));
}
rewriter.replaceOp(op, results);
return this->matchSuccess();
}
};
struct CallOpLowering : public CallOpInterfaceLowering<CallOp> {
using Super::Super;
};
struct CallIndirectOpLowering : public CallOpInterfaceLowering<CallIndirectOp> {
using Super::Super;
};
// A `dealloc` is converted into a call to `free` on the underlying data buffer.
// The memref descriptor being an SSA value, there is no need to clean it up
// in any way.
struct DeallocOpLowering : public LLVMLegalizationPattern<DeallocOp> {
using LLVMLegalizationPattern<DeallocOp>::LLVMLegalizationPattern;
DeallocOpLowering(LLVM::LLVMDialect &dialect_, LLVMTypeConverter &converter,
bool useAlloca = false)
: LLVMLegalizationPattern<DeallocOp>(dialect_, converter),
useAlloca(useAlloca) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
if (useAlloca)
return rewriter.eraseOp(op), matchSuccess();
assert(operands.size() == 1 && "dealloc takes one operand");
OperandAdaptor<DeallocOp> transformed(operands);
// Insert the `free` declaration if it is not already present.
auto freeFunc =
op->getParentOfType<ModuleOp>().lookupSymbol<LLVM::LLVMFuncOp>("free");
if (!freeFunc) {
OpBuilder moduleBuilder(op->getParentOfType<ModuleOp>().getBodyRegion());
freeFunc = moduleBuilder.create<LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "free",
LLVM::LLVMType::getFunctionTy(getVoidType(), getVoidPtrType(),
/*isVarArg=*/false));
}
MemRefDescriptor memref(transformed.memref());
Value *casted = rewriter.create<LLVM::BitcastOp>(
op->getLoc(), getVoidPtrType(),
memref.allocatedPtr(rewriter, op->getLoc()));
rewriter.replaceOpWithNewOp<LLVM::CallOp>(
op, ArrayRef<Type>(), rewriter.getSymbolRefAttr(freeFunc), casted);
return matchSuccess();
}
bool useAlloca;
};
// A `tanh` is converted into a call to the `tanh` function.
struct TanhOpLowering : public LLVMLegalizationPattern<TanhOp> {
using LLVMLegalizationPattern<TanhOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
using LLVMFuncOpT = LLVM::LLVMFuncOp;
using LLVMTypeT = LLVM::LLVMType;
OperandAdaptor<TanhOp> transformed(operands);
LLVMTypeT operandType =
transformed.operand()->getType().dyn_cast_or_null<LLVM::LLVMType>();
if (!operandType)
return matchFailure();
std::string functionName;
if (operandType.isFloatTy())
functionName = "tanhf";
else if (operandType.isDoubleTy())
functionName = "tanh";
else
return matchFailure();
// Get a reference to the tanh function, inserting it if necessary.
Operation *tanhFunc =
SymbolTable::lookupNearestSymbolFrom(op, functionName);
LLVMFuncOpT tanhLLVMFunc;
if (tanhFunc) {
tanhLLVMFunc = cast<LLVMFuncOpT>(tanhFunc);
} else {
PatternRewriter::InsertionGuard insertGuard(rewriter);
auto module = op->getParentOfType<ModuleOp>();
rewriter.setInsertionPointToStart(module.getBody());
tanhLLVMFunc = rewriter.create<LLVMFuncOpT>(
module.getLoc(), functionName,
LLVMTypeT::getFunctionTy(operandType, operandType,
/*isVarArg=*/false));
}
rewriter.replaceOpWithNewOp<LLVM::CallOp>(
op, operandType, rewriter.getSymbolRefAttr(tanhLLVMFunc),
transformed.operand());
return matchSuccess();
}
};
struct MemRefCastOpLowering : public LLVMLegalizationPattern<MemRefCastOp> {
using LLVMLegalizationPattern<MemRefCastOp>::LLVMLegalizationPattern;
PatternMatchResult match(Operation *op) const override {
auto memRefCastOp = cast<MemRefCastOp>(op);
Type srcType = memRefCastOp.getOperand()->getType();
Type dstType = memRefCastOp.getType();
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) {
MemRefType sourceType =
memRefCastOp.getOperand()->getType().cast<MemRefType>();
MemRefType targetType = memRefCastOp.getType().cast<MemRefType>();
return (isSupportedMemRefType(targetType) &&
isSupportedMemRefType(sourceType))
? matchSuccess()
: matchFailure();
}
// At least one of the operands is unranked type
assert(srcType.isa<UnrankedMemRefType>() ||
dstType.isa<UnrankedMemRefType>());
// Unranked to unranked cast is disallowed
return !(srcType.isa<UnrankedMemRefType>() &&
dstType.isa<UnrankedMemRefType>())
? matchSuccess()
: matchFailure();
}
void rewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto memRefCastOp = cast<MemRefCastOp>(op);
OperandAdaptor<MemRefCastOp> transformed(operands);
auto srcType = memRefCastOp.getOperand()->getType();
auto dstType = memRefCastOp.getType();
auto targetStructType = lowering.convertType(memRefCastOp.getType());
auto loc = op->getLoc();
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) {
// memref_cast is defined for source and destination memref types with the
// same element type, same mappings, same address space and same rank.
// Therefore a simple bitcast suffices. If not it is undefined behavior.
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(op, targetStructType,
transformed.source());
} else if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
// Casting ranked to unranked memref type
// Set the rank in the destination from the memref type
// Allocate space on the stack and copy the src memref descriptor
// Set the ptr in the destination to the stack space
auto srcMemRefType = srcType.cast<MemRefType>();
int64_t rank = srcMemRefType.getRank();
// ptr = AllocaOp sizeof(MemRefDescriptor)
auto ptr = lowering.promoteOneMemRefDescriptor(loc, transformed.source(),
rewriter);
// voidptr = BitCastOp srcType* to void*
auto voidPtr =
rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
.getResult();
// rank = ConstantOp srcRank
auto rankVal = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(rewriter.getIntegerType(64)),
rewriter.getI64IntegerAttr(rank));
// undef = UndefOp
UnrankedMemRefDescriptor memRefDesc =
UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
// d1 = InsertValueOp undef, rank, 0
memRefDesc.setRank(rewriter, loc, rankVal);
// d2 = InsertValueOp d1, voidptr, 1
memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
rewriter.replaceOp(op, (Value *)memRefDesc);
} else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
// Casting from unranked type to ranked.
// The operation is assumed to be doing a correct cast. If the destination
// type mismatches the unranked the type, it is undefined behavior.
UnrankedMemRefDescriptor memRefDesc(transformed.source());
// ptr = ExtractValueOp src, 1
auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
// castPtr = BitCastOp i8* to structTy*
auto castPtr =
rewriter
.create<LLVM::BitcastOp>(
loc, targetStructType.cast<LLVM::LLVMType>().getPointerTo(),
ptr)
.getResult();
// struct = LoadOp castPtr
auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
rewriter.replaceOp(op, loadOp.getResult());
} else {
llvm_unreachable("Unsuppored unranked memref to unranked memref cast");
}
}
};
// A `dim` is converted to a constant for static sizes and to an access to the
// size stored in the memref descriptor for dynamic sizes.
struct DimOpLowering : public LLVMLegalizationPattern<DimOp> {
using LLVMLegalizationPattern<DimOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto dimOp = cast<DimOp>(op);
OperandAdaptor<DimOp> transformed(operands);
MemRefType type = dimOp.getOperand()->getType().cast<MemRefType>();
auto shape = type.getShape();
int64_t index = dimOp.getIndex();
// Extract dynamic size from the memref descriptor.
if (ShapedType::isDynamic(shape[index]))
rewriter.replaceOp(op, {MemRefDescriptor(transformed.memrefOrTensor())
.size(rewriter, op->getLoc(), index)});
else
// Use constant for static size.
rewriter.replaceOp(
op, createIndexConstant(rewriter, op->getLoc(), shape[index]));
return matchSuccess();
}
};
// Common base for load and store operations on MemRefs. Restricts the match
// to supported MemRef types. Provides functionality to emit code accessing a
// specific element of the underlying data buffer.
template <typename Derived>
struct LoadStoreOpLowering : public LLVMLegalizationPattern<Derived> {
using LLVMLegalizationPattern<Derived>::LLVMLegalizationPattern;
using Base = LoadStoreOpLowering<Derived>;
PatternMatchResult match(Operation *op) const override {
MemRefType type = cast<Derived>(op).getMemRefType();
return isSupportedMemRefType(type) ? this->matchSuccess()
: this->matchFailure();
}
// Given subscript indices and array sizes in row-major order,
// i_n, i_{n-1}, ..., i_1
// s_n, s_{n-1}, ..., s_1
// obtain a value that corresponds to the linearized subscript
// \sum_k i_k * \prod_{j=1}^{k-1} s_j
// by accumulating the running linearized value.
// Note that `indices` and `allocSizes` are passed in the same order as they
// appear in load/store operations and memref type declarations.
Value *linearizeSubscripts(ConversionPatternRewriter &builder, Location loc,
ArrayRef<Value *> indices,
ArrayRef<Value *> allocSizes) const {
assert(indices.size() == allocSizes.size() &&
"mismatching number of indices and allocation sizes");
assert(!indices.empty() && "cannot linearize a 0-dimensional access");
Value *linearized = indices.front();
for (int i = 1, nSizes = allocSizes.size(); i < nSizes; ++i) {
linearized = builder.create<LLVM::MulOp>(
loc, this->getIndexType(),
ArrayRef<Value *>{linearized, allocSizes[i]});
linearized = builder.create<LLVM::AddOp>(
loc, this->getIndexType(), ArrayRef<Value *>{linearized, indices[i]});
}
return linearized;
}
// This is a strided getElementPtr variant that linearizes subscripts as:
// `base_offset + index_0 * stride_0 + ... + index_n * stride_n`.
Value *getStridedElementPtr(Location loc, Type elementTypePtr,
Value *descriptor, ArrayRef<Value *> indices,
ArrayRef<int64_t> strides, int64_t offset,
ConversionPatternRewriter &rewriter) const {
MemRefDescriptor memRefDescriptor(descriptor);
Value *base = memRefDescriptor.alignedPtr(rewriter, loc);
Value *offsetValue = offset == MemRefType::getDynamicStrideOrOffset()
? memRefDescriptor.offset(rewriter, loc)
: this->createIndexConstant(rewriter, loc, offset);
for (int i = 0, e = indices.size(); i < e; ++i) {
Value *stride =
strides[i] == MemRefType::getDynamicStrideOrOffset()
? memRefDescriptor.stride(rewriter, loc, i)
: this->createIndexConstant(rewriter, loc, strides[i]);
Value *additionalOffset =
rewriter.create<LLVM::MulOp>(loc, indices[i], stride);
offsetValue =
rewriter.create<LLVM::AddOp>(loc, offsetValue, additionalOffset);
}
return rewriter.create<LLVM::GEPOp>(loc, elementTypePtr, base, offsetValue);
}
Value *getDataPtr(Location loc, MemRefType type, Value *memRefDesc,
ArrayRef<Value *> indices,
ConversionPatternRewriter &rewriter,
llvm::Module &module) const {
LLVM::LLVMType ptrType = MemRefDescriptor(memRefDesc).getElementType();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
assert(succeeded(successStrides) && "unexpected non-strided memref");
(void)successStrides;
return getStridedElementPtr(loc, ptrType, memRefDesc, indices, strides,
offset, rewriter);
}
};
// Load operation is lowered to obtaining a pointer to the indexed element
// and loading it.
struct LoadOpLowering : public LoadStoreOpLowering<LoadOp> {
using Base::Base;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loadOp = cast<LoadOp>(op);
OperandAdaptor<LoadOp> transformed(operands);
auto type = loadOp.getMemRefType();
Value *dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
transformed.indices(), rewriter, getModule());
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(op, dataPtr);
return matchSuccess();
}
};
// Store operation is lowered to obtaining a pointer to the indexed element,
// and storing the given value to it.
struct StoreOpLowering : public LoadStoreOpLowering<StoreOp> {
using Base::Base;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<StoreOp>(op).getMemRefType();
OperandAdaptor<StoreOp> transformed(operands);
Value *dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
transformed.indices(), rewriter, getModule());
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(),
dataPtr);
return matchSuccess();
}
};
// The lowering of index_cast becomes an integer conversion since index becomes
// an integer. If the bit width of the source and target integer types is the
// same, just erase the cast. If the target type is wider, sign-extend the
// value, otherwise truncate it.
struct IndexCastOpLowering : public LLVMLegalizationPattern<IndexCastOp> {
using LLVMLegalizationPattern<IndexCastOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
IndexCastOpOperandAdaptor transformed(operands);
auto indexCastOp = cast<IndexCastOp>(op);
auto targetType =
this->lowering.convertType(indexCastOp.getResult()->getType())
.cast<LLVM::LLVMType>();
auto sourceType = transformed.in()->getType().cast<LLVM::LLVMType>();
unsigned targetBits = targetType.getUnderlyingType()->getIntegerBitWidth();
unsigned sourceBits = sourceType.getUnderlyingType()->getIntegerBitWidth();
if (targetBits == sourceBits)
rewriter.replaceOp(op, transformed.in());
else if (targetBits < sourceBits)
rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType,
transformed.in());
else
rewriter.replaceOpWithNewOp<LLVM::SExtOp>(op, targetType,
transformed.in());
return matchSuccess();
}
};
// Convert std.cmp predicate into the LLVM dialect CmpPredicate. The two
// enums share the numerical values so just cast.
template <typename LLVMPredType, typename StdPredType>
static LLVMPredType convertCmpPredicate(StdPredType pred) {
return static_cast<LLVMPredType>(pred);
}
struct CmpIOpLowering : public LLVMLegalizationPattern<CmpIOp> {
using LLVMLegalizationPattern<CmpIOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto cmpiOp = cast<CmpIOp>(op);
CmpIOpOperandAdaptor transformed(operands);
rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
op, lowering.convertType(cmpiOp.getResult()->getType()),
rewriter.getI64IntegerAttr(static_cast<int64_t>(
convertCmpPredicate<LLVM::ICmpPredicate>(cmpiOp.getPredicate()))),
transformed.lhs(), transformed.rhs());
return matchSuccess();
}
};
struct CmpFOpLowering : public LLVMLegalizationPattern<CmpFOp> {
using LLVMLegalizationPattern<CmpFOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto cmpfOp = cast<CmpFOp>(op);
CmpFOpOperandAdaptor transformed(operands);
rewriter.replaceOpWithNewOp<LLVM::FCmpOp>(
op, lowering.convertType(cmpfOp.getResult()->getType()),
rewriter.getI64IntegerAttr(static_cast<int64_t>(
convertCmpPredicate<LLVM::FCmpPredicate>(cmpfOp.getPredicate()))),
transformed.lhs(), transformed.rhs());
return matchSuccess();
}
};
struct SIToFPLowering
: public OneToOneLLVMOpLowering<SIToFPOp, LLVM::SIToFPOp> {
using Super::Super;
};
struct FPExtLowering : public OneToOneLLVMOpLowering<FPExtOp, LLVM::FPExtOp> {
using Super::Super;
};
struct FPTruncLowering
: public OneToOneLLVMOpLowering<FPTruncOp, LLVM::FPTruncOp> {
using Super::Super;
};
struct SignExtendIOpLowering
: public OneToOneLLVMOpLowering<SignExtendIOp, LLVM::SExtOp> {
using Super::Super;
};
struct TruncateIOpLowering
: public OneToOneLLVMOpLowering<TruncateIOp, LLVM::TruncOp> {
using Super::Super;
};
struct ZeroExtendIOpLowering
: public OneToOneLLVMOpLowering<ZeroExtendIOp, LLVM::ZExtOp> {
using Super::Super;
};
// Base class for LLVM IR lowering terminator operations with successors.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMTerminatorLowering
: public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = OneToOneLLVMTerminatorLowering<SourceOp, TargetOp>;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> properOperands,
ArrayRef<Block *> destinations,
ArrayRef<ArrayRef<Value *>> operands,
ConversionPatternRewriter &rewriter) const override {
SmallVector<ValueRange, 2> operandRanges(operands.begin(), operands.end());
rewriter.replaceOpWithNewOp<TargetOp>(op, properOperands, destinations,
operandRanges, op->getAttrs());
return this->matchSuccess();
}
};
// Special lowering pattern for `ReturnOps`. Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values. Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public LLVMLegalizationPattern<ReturnOp> {
using LLVMLegalizationPattern<ReturnOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
unsigned numArguments = op->getNumOperands();
// If ReturnOp has 0 or 1 operand, create it and return immediately.
if (numArguments == 0) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, llvm::ArrayRef<Value *>(),
llvm::ArrayRef<Block *>(),
op->getAttrs());
return matchSuccess();
}
if (numArguments == 1) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, llvm::ArrayRef<Value *>(operands.front()),
llvm::ArrayRef<Block *>(), op->getAttrs());
return matchSuccess();
}
// Otherwise, we need to pack the arguments into an LLVM struct type before
// returning.
auto packedType =
lowering.packFunctionResults(llvm::to_vector<4>(op->getOperandTypes()));
Value *packed = rewriter.create<LLVM::UndefOp>(op->getLoc(), packedType);
for (unsigned i = 0; i < numArguments; ++i) {
packed = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), packedType, packed, operands[i],
rewriter.getI64ArrayAttr(i));
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, llvm::makeArrayRef(packed),
llvm::ArrayRef<Block *>(),
op->getAttrs());
return matchSuccess();
}
};
// FIXME: this should be tablegen'ed as well.
struct BranchOpLowering
: public OneToOneLLVMTerminatorLowering<BranchOp, LLVM::BrOp> {
using Super::Super;
};
struct CondBranchOpLowering
: public OneToOneLLVMTerminatorLowering<CondBranchOp, LLVM::CondBrOp> {
using Super::Super;
};
// The Splat operation is lowered to an insertelement + a shufflevector
// operation. Splat to only 1-d vector result types are lowered.
struct SplatOpLowering : public LLVMLegalizationPattern<SplatOp> {
using LLVMLegalizationPattern<SplatOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto splatOp = cast<SplatOp>(op);
VectorType resultType = splatOp.getType().dyn_cast<VectorType>();
if (!resultType || resultType.getRank() != 1)
return matchFailure();
// First insert it into an undef vector so we can shuffle it.
auto vectorType = lowering.convertType(splatOp.getType());
Value *undef = rewriter.create<LLVM::UndefOp>(op->getLoc(), vectorType);
auto zero = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), lowering.convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
auto v = rewriter.create<LLVM::InsertElementOp>(
op->getLoc(), vectorType, undef, splatOp.getOperand(), zero);
int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0);
SmallVector<int32_t, 4> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues);
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, v, undef, zeroAttrs);
return matchSuccess();
}
};
// The Splat operation is lowered to an insertelement + a shufflevector
// operation. Splat to only 2+-d vector result types are lowered by the
// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering.
struct SplatNdOpLowering : public LLVMLegalizationPattern<SplatOp> {
using LLVMLegalizationPattern<SplatOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto splatOp = cast<SplatOp>(op);
OperandAdaptor<SplatOp> adaptor(operands);
VectorType resultType = splatOp.getType().dyn_cast<VectorType>();
if (!resultType || resultType.getRank() == 1)
return matchFailure();
// First insert it into an undef vector so we can shuffle it.
auto loc = op->getLoc();
auto vectorTypeInfo = extractNDVectorTypeInfo(resultType, lowering);
auto llvmArrayTy = vectorTypeInfo.llvmArrayTy;
auto llvmVectorTy = vectorTypeInfo.llvmVectorTy;
if (!llvmArrayTy || !llvmVectorTy)
return matchFailure();
// Construct returned value.
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy);
// Construct a 1-D vector with the splatted value that we insert in all the
// places within the returned descriptor.
Value *vdesc = rewriter.create<LLVM::UndefOp>(loc, llvmVectorTy);
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
Value *v = rewriter.create<LLVM::InsertElementOp>(loc, llvmVectorTy, vdesc,
adaptor.input(), zero);
// Shuffle the value across the desired number of elements.
int64_t width = resultType.getDimSize(resultType.getRank() - 1);
SmallVector<int32_t, 4> zeroValues(width, 0);
ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues);
v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroAttrs);
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) {
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc, v,
position);
});
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
/// Conversion pattern that transforms a subview op into:
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
/// and stride.
/// The subview op is replaced by the descriptor.
struct SubViewOpLowering : public LLVMLegalizationPattern<SubViewOp> {
using LLVMLegalizationPattern<SubViewOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto viewOp = cast<SubViewOp>(op);
// TODO(b/144779634, ravishankarm) : After Tblgen is adapted to support
// having multiple variadic operands where each operand can have different
// number of entries, clean all of this up.
SmallVector<Value *, 2> dynamicOffsets(
std::next(operands.begin()),
std::next(operands.begin(), 1 + viewOp.getNumOffsets()));
SmallVector<Value *, 2> dynamicSizes(
std::next(operands.begin(), 1 + viewOp.getNumOffsets()),
std::next(operands.begin(),
1 + viewOp.getNumOffsets() + viewOp.getNumSizes()));
SmallVector<Value *, 2> dynamicStrides(
std::next(operands.begin(),
1 + viewOp.getNumOffsets() + viewOp.getNumSizes()),
operands.end());
auto sourceMemRefType = viewOp.source()->getType().cast<MemRefType>();
auto sourceElementTy =
lowering.convertType(sourceMemRefType.getElementType())
.dyn_cast_or_null<LLVM::LLVMType>();
auto viewMemRefType = viewOp.getType();
auto targetElementTy = lowering.convertType(viewMemRefType.getElementType())
.dyn_cast<LLVM::LLVMType>();
auto targetDescTy =
lowering.convertType(viewMemRefType).dyn_cast_or_null<LLVM::LLVMType>();
if (!sourceElementTy || !targetDescTy)
return matchFailure();
// Currently, only rank > 0 and full or no operands are supported. Fail to
// convert otherwise.
unsigned rank = sourceMemRefType.getRank();
if (viewMemRefType.getRank() == 0 || (rank != dynamicOffsets.size()) ||
(!dynamicSizes.empty() && rank != dynamicSizes.size()) ||
(!dynamicStrides.empty() && rank != dynamicStrides.size()))
return matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
if (failed(successStrides))
return matchFailure();
// Create the descriptor.
MemRefDescriptor sourceMemRef(operands.front());
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
// Copy the buffer pointer from the old descriptor to the new one.
Value *extracted = sourceMemRef.allocatedPtr(rewriter, loc);
Value *bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
extracted = sourceMemRef.alignedPtr(rewriter, loc);
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
// Extract strides needed to compute offset.
SmallVector<Value *, 4> strideValues;
strideValues.reserve(viewMemRefType.getRank());
for (int i = 0, e = viewMemRefType.getRank(); i < e; ++i)
strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
// Fill in missing dynamic sizes.
auto llvmIndexType = lowering.convertType(rewriter.getIndexType());
if (dynamicSizes.empty()) {
dynamicSizes.reserve(viewMemRefType.getRank());
auto shape = viewMemRefType.getShape();
for (auto extent : shape) {
dynamicSizes.push_back(rewriter.create<LLVM::ConstantOp>(
loc, llvmIndexType, rewriter.getI64IntegerAttr(extent)));
}
}
// Offset.
Value *baseOffset = sourceMemRef.offset(rewriter, loc);
for (int i = 0, e = viewMemRefType.getRank(); i < e; ++i) {
Value *min = dynamicOffsets[i];
baseOffset = rewriter.create<LLVM::AddOp>(
loc, baseOffset,
rewriter.create<LLVM::MulOp>(loc, min, strideValues[i]));
}
targetMemRef.setOffset(rewriter, loc, baseOffset);
// Update sizes and strides.
for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
targetMemRef.setSize(rewriter, loc, i, dynamicSizes[i]);
Value *newStride;
if (dynamicStrides.empty())
newStride = rewriter.create<LLVM::ConstantOp>(
loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
else
newStride = rewriter.create<LLVM::MulOp>(loc, dynamicStrides[i],
strideValues[i]);
targetMemRef.setStride(rewriter, loc, i, newStride);
}
rewriter.replaceOp(op, {targetMemRef});
return matchSuccess();
}
};
/// Conversion pattern that transforms a op into:
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
/// and stride.
/// The view op is replaced by the descriptor.
struct ViewOpLowering : public LLVMLegalizationPattern<ViewOp> {
using LLVMLegalizationPattern<ViewOp>::LLVMLegalizationPattern;
// Build and return the value for the idx^th shape dimension, either by
// returning the constant shape dimension or counting the proper dynamic size.
Value *getSize(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<int64_t> shape, ArrayRef<Value *> dynamicSizes,
unsigned idx) const {
assert(idx < shape.size());
if (!ShapedType::isDynamic(shape[idx]))
return createIndexConstant(rewriter, loc, shape[idx]);
// Count the number of dynamic dims in range [0, idx]
unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
return ShapedType::isDynamic(v);
});
return dynamicSizes[nDynamic];
}
// Build and return the idx^th stride, either by returning the constant stride
// or by computing the dynamic stride from the current `runningStride` and
// `nextSize`. The caller should keep a running stride and update it with the
// result returned by this function.
Value *getStride(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<int64_t> strides, Value *nextSize,
Value *runningStride, unsigned idx) const {
assert(idx < strides.size());
if (strides[idx] != MemRefType::getDynamicStrideOrOffset())
return createIndexConstant(rewriter, loc, strides[idx]);
if (nextSize)
return runningStride
? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
: nextSize;
assert(!runningStride);
return createIndexConstant(rewriter, loc, 1);
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto viewOp = cast<ViewOp>(op);
ViewOpOperandAdaptor adaptor(operands);
auto viewMemRefType = viewOp.getType();
auto targetElementTy = lowering.convertType(viewMemRefType.getElementType())
.dyn_cast<LLVM::LLVMType>();
auto targetDescTy =
lowering.convertType(viewMemRefType).dyn_cast<LLVM::LLVMType>();
if (!targetDescTy)
return op->emitWarning("Target descriptor type not converted to LLVM"),
matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
if (failed(successStrides))
return op->emitWarning("cannot cast to non-strided shape"),
matchFailure();
// Create the descriptor.
MemRefDescriptor sourceMemRef(adaptor.source());
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
// Field 1: Copy the allocated pointer, used for malloc/free.
Value *extracted = sourceMemRef.allocatedPtr(rewriter, loc);
Value *bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
// Field 2: Copy the actual aligned pointer to payload.
extracted = sourceMemRef.alignedPtr(rewriter, loc);
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
// Field 3: Copy the offset in aligned pointer.
unsigned numDynamicSizes = llvm::size(viewOp.getDynamicSizes());
(void)numDynamicSizes;
bool hasDynamicOffset = offset == MemRefType::getDynamicStrideOrOffset();
auto sizeAndOffsetOperands = adaptor.operands();
assert(llvm::size(sizeAndOffsetOperands) ==
numDynamicSizes + (hasDynamicOffset ? 1 : 0));
Value *baseOffset = !hasDynamicOffset
? createIndexConstant(rewriter, loc, offset)
// TODO(ntv): better adaptor.
: sizeAndOffsetOperands.front();
targetMemRef.setOffset(rewriter, loc, baseOffset);
// Early exit for 0-D corner case.
if (viewMemRefType.getRank() == 0)
return rewriter.replaceOp(op, {targetMemRef}), matchSuccess();
// Fields 4 and 5: Update sizes and strides.
if (strides.back() != 1)
return op->emitWarning("cannot cast to non-contiguous shape"),
matchFailure();
Value *stride = nullptr, *nextSize = nullptr;
// Drop the dynamic stride from the operand list, if present.
ArrayRef<Value *> sizeOperands(sizeAndOffsetOperands);
if (hasDynamicOffset)
sizeOperands = sizeOperands.drop_front();
for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
// Update size.
Value *size =
getSize(rewriter, loc, viewMemRefType.getShape(), sizeOperands, i);
targetMemRef.setSize(rewriter, loc, i, size);
// Update stride.
stride = getStride(rewriter, loc, strides, nextSize, stride, i);
targetMemRef.setStride(rewriter, loc, i, stride);
nextSize = size;
}
rewriter.replaceOp(op, {targetMemRef});
return matchSuccess();
}
};
} // namespace
static void ensureDistinctSuccessors(Block &bb) {
auto *terminator = bb.getTerminator();
// Find repeated successors with arguments.
llvm::SmallDenseMap<Block *, llvm::SmallVector<int, 4>> successorPositions;
for (int i = 0, e = terminator->getNumSuccessors(); i < e; ++i) {
Block *successor = terminator->getSuccessor(i);
// Blocks with no arguments are safe even if they appear multiple times
// because they don't need PHI nodes.
if (successor->getNumArguments() == 0)
continue;
successorPositions[successor].push_back(i);
}
// If a successor appears for the second or more time in the terminator,
// create a new dummy block that unconditionally branches to the original
// destination, and retarget the terminator to branch to this new block.
// There is no need to pass arguments to the dummy block because it will be
// dominated by the original block and can therefore use any values defined in
// the original block.
for (const auto &successor : successorPositions) {
const auto &positions = successor.second;
// Start from the second occurrence of a block in the successor list.
for (auto position = std::next(positions.begin()), end = positions.end();
position != end; ++position) {
auto *dummyBlock = new Block();
bb.getParent()->push_back(dummyBlock);
auto builder = OpBuilder(dummyBlock);
SmallVector<Value *, 8> operands(
terminator->getSuccessorOperands(*position));
builder.create<BranchOp>(terminator->getLoc(), successor.first, operands);
terminator->setSuccessor(dummyBlock, *position);
for (int i = 0, e = terminator->getNumSuccessorOperands(*position); i < e;
++i)
terminator->eraseSuccessorOperand(*position, i);
}
}
}
void mlir::LLVM::ensureDistinctSuccessors(ModuleOp m) {
for (auto f : m.getOps<FuncOp>()) {
for (auto &bb : f.getBlocks()) {
::ensureDistinctSuccessors(bb);
}
}
}
/// Collect a set of patterns to convert from the Standard dialect to LLVM.
void mlir::populateStdToLLVMNonMemoryConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
// FIXME: this should be tablegen'ed
// clang-format off
patterns.insert<
AddFOpLowering,
AddIOpLowering,
AndOpLowering,
BranchOpLowering,
CallIndirectOpLowering,
CallOpLowering,
CmpFOpLowering,
CmpIOpLowering,
CondBranchOpLowering,
ConstLLVMOpLowering,
DivFOpLowering,
DivISOpLowering,
DivIUOpLowering,
ExpOpLowering,
LogOpLowering,
Log10OpLowering,
Log2OpLowering,
FPExtLowering,
FPTruncLowering,
IndexCastOpLowering,
MulFOpLowering,
MulIOpLowering,
OrOpLowering,
RemFOpLowering,
RemISOpLowering,
RemIUOpLowering,
ReturnOpLowering,
SIToFPLowering,
SelectOpLowering,
SignExtendIOpLowering,
SplatOpLowering,
SplatNdOpLowering,
SubFOpLowering,
SubIOpLowering,
TanhOpLowering,
TruncateIOpLowering,
XOrOpLowering,
ZeroExtendIOpLowering>(*converter.getDialect(), converter);
// clang-format on
}
void mlir::populateStdToLLVMMemoryConversionPatters(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
// clang-format off
patterns.insert<
DimOpLowering,
FuncOpConversion,
LoadOpLowering,
MemRefCastOpLowering,
StoreOpLowering,
SubViewOpLowering,
ViewOpLowering>(*converter.getDialect(), converter);
patterns.insert<
AllocOpLowering,
DeallocOpLowering>(
*converter.getDialect(), converter, clUseAlloca.getValue());
// clang-format on
}
void mlir::populateStdToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
populateStdToLLVMNonMemoryConversionPatterns(converter, patterns);
populateStdToLLVMMemoryConversionPatters(converter, patterns);
}
// Convert types using the stored LLVM IR module.
Type LLVMTypeConverter::convertType(Type t) { return convertStandardType(t); }
// Create an LLVM IR structure type if there is more than one result.
Type LLVMTypeConverter::packFunctionResults(ArrayRef<Type> types) {
assert(!types.empty() && "expected non-empty list of type");
if (types.size() == 1)
return convertType(types.front());
SmallVector<LLVM::LLVMType, 8> resultTypes;
resultTypes.reserve(types.size());
for (auto t : types) {
auto converted = convertType(t).dyn_cast<LLVM::LLVMType>();
if (!converted)
return {};
resultTypes.push_back(converted);
}
return LLVM::LLVMType::getStructTy(llvmDialect, resultTypes);
}
Value *LLVMTypeConverter::promoteOneMemRefDescriptor(Location loc,
Value *operand,
OpBuilder &builder) {
auto *context = builder.getContext();
auto int64Ty = LLVM::LLVMType::getInt64Ty(getDialect());
auto indexType = IndexType::get(context);
// Alloca with proper alignment. We do not expect optimizations of this
// alloca op and so we omit allocating at the entry block.
auto ptrType = operand->getType().cast<LLVM::LLVMType>().getPointerTo();
Value *one = builder.create<LLVM::ConstantOp>(loc, int64Ty,
IntegerAttr::get(indexType, 1));
Value *allocated =
builder.create<LLVM::AllocaOp>(loc, ptrType, one, /*alignment=*/0);
// Store into the alloca'ed descriptor.
builder.create<LLVM::StoreOp>(loc, operand, allocated);
return allocated;
}
SmallVector<Value *, 4>
LLVMTypeConverter::promoteMemRefDescriptors(Location loc, ValueRange opOperands,
ValueRange operands,
OpBuilder &builder) {
SmallVector<Value *, 4> promotedOperands;
promotedOperands.reserve(operands.size());
for (auto it : llvm::zip(opOperands, operands)) {
auto *operand = std::get<0>(it);
auto *llvmOperand = std::get<1>(it);
if (!operand->getType().isa<MemRefType>() &&
!operand->getType().isa<UnrankedMemRefType>()) {
promotedOperands.push_back(operand);
continue;
}
promotedOperands.push_back(
promoteOneMemRefDescriptor(loc, llvmOperand, builder));
}
return promotedOperands;
}
/// Create an instance of LLVMTypeConverter in the given context.
static std::unique_ptr<LLVMTypeConverter>
makeStandardToLLVMTypeConverter(MLIRContext *context) {
return std::make_unique<LLVMTypeConverter>(context);
}
namespace {
/// A pass converting MLIR operations into the LLVM IR dialect.
struct LLVMLoweringPass : public ModulePass<LLVMLoweringPass> {
// By default, the patterns are those converting Standard operations to the
// LLVMIR dialect.
explicit LLVMLoweringPass(
bool useAlloca = false,
LLVMPatternListFiller patternListFiller =
populateStdToLLVMConversionPatterns,
LLVMTypeConverterMaker converterBuilder = makeStandardToLLVMTypeConverter)
: patternListFiller(patternListFiller),
typeConverterMaker(converterBuilder) {}
// Run the dialect converter on the module.
void runOnModule() override {
if (!typeConverterMaker || !patternListFiller)
return signalPassFailure();
ModuleOp m = getModule();
LLVM::ensureDistinctSuccessors(m);
std::unique_ptr<LLVMTypeConverter> typeConverter =
typeConverterMaker(&getContext());
if (!typeConverter)
return signalPassFailure();
OwningRewritePatternList patterns;
populateLoopToStdConversionPatterns(patterns, m.getContext());
patternListFiller(*typeConverter, patterns);
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
if (failed(applyPartialConversion(m, target, patterns, &*typeConverter)))
signalPassFailure();
}
// Callback for creating a list of patterns. It is called every time in
// runOnModule since applyPartialConversion consumes the list.
LLVMPatternListFiller patternListFiller;
// Callback for creating an instance of type converter. The converter
// constructor needs an MLIRContext, which is not available until runOnModule.
LLVMTypeConverterMaker typeConverterMaker;
};
} // end namespace
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::createLowerToLLVMPass(bool useAlloca) {
return std::make_unique<LLVMLoweringPass>(useAlloca);
}
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::createLowerToLLVMPass(LLVMPatternListFiller patternListFiller,
LLVMTypeConverterMaker typeConverterMaker,
bool useAlloca) {
return std::make_unique<LLVMLoweringPass>(useAlloca, patternListFiller,
typeConverterMaker);
}
static PassRegistration<LLVMLoweringPass>
pass("convert-std-to-llvm",
"Convert scalar and vector operations from the "
"Standard to the LLVM dialect",
[] {
return std::make_unique<LLVMLoweringPass>(
clUseAlloca.getValue(), populateStdToLLVMConversionPatterns,
makeStandardToLLVMTypeConverter);
});