Similar to -fprofile-generate=, add -fmemory-profile= which takes a directory path. This is passed down to LLVM via a new module flag metadata. LLVM in turn provides this name to the runtime via the new __memprof_profile_filename variable. Additionally, always pass a default filename (in $cwd if a directory name is not specified vi the = form of the option). This is also consistent with the behavior of the PGO instrumentation. Since the memory profiles will generally be fairly large, it doesn't make sense to dump them to stderr. Also, importantly, the memory profiles will eventually be dumped in a compact binary format, which is another reason why it does not make sense to send these to stderr by default. Change the existing memprof tests to specify log_path=stderr when that was being relied on. Depends on D89086. Differential Revision: https://reviews.llvm.org/D89087
637 lines
23 KiB
C++
637 lines
23 KiB
C++
//===- MemProfiler.cpp - memory allocation and access profiler ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of MemProfiler. Memory accesses are instrumented
|
|
// to increment the access count held in a shadow memory location, or
|
|
// alternatively to call into the runtime. Memory intrinsic calls (memmove,
|
|
// memcpy, memset) are changed to call the memory profiling runtime version
|
|
// instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memprof"
|
|
|
|
constexpr int LLVM_MEM_PROFILER_VERSION = 1;
|
|
|
|
// Size of memory mapped to a single shadow location.
|
|
constexpr uint64_t DefaultShadowGranularity = 64;
|
|
|
|
// Scale from granularity down to shadow size.
|
|
constexpr uint64_t DefaultShadowScale = 3;
|
|
|
|
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
|
|
constexpr uint64_t MemProfCtorAndDtorPriority = 1;
|
|
// On Emscripten, the system needs more than one priorities for constructors.
|
|
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
|
|
constexpr char MemProfInitName[] = "__memprof_init";
|
|
constexpr char MemProfVersionCheckNamePrefix[] =
|
|
"__memprof_version_mismatch_check_v";
|
|
|
|
constexpr char MemProfShadowMemoryDynamicAddress[] =
|
|
"__memprof_shadow_memory_dynamic_address";
|
|
|
|
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
|
|
|
|
// Command-line flags.
|
|
|
|
static cl::opt<bool> ClInsertVersionCheck(
|
|
"memprof-guard-against-version-mismatch",
|
|
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
// This flag may need to be replaced with -f[no-]memprof-reads.
|
|
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
|
|
cl::desc("instrument read instructions"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClInstrumentWrites("memprof-instrument-writes",
|
|
cl::desc("instrument write instructions"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClInstrumentAtomics(
|
|
"memprof-instrument-atomics",
|
|
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClUseCalls(
|
|
"memprof-use-callbacks",
|
|
cl::desc("Use callbacks instead of inline instrumentation sequences."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<std::string>
|
|
ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
|
|
cl::desc("Prefix for memory access callbacks"),
|
|
cl::Hidden, cl::init("__memprof_"));
|
|
|
|
// These flags allow to change the shadow mapping.
|
|
// The shadow mapping looks like
|
|
// Shadow = ((Mem & mask) >> scale) + offset
|
|
|
|
static cl::opt<int> ClMappingScale("memprof-mapping-scale",
|
|
cl::desc("scale of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultShadowScale));
|
|
|
|
static cl::opt<int>
|
|
ClMappingGranularity("memprof-mapping-granularity",
|
|
cl::desc("granularity of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultShadowGranularity));
|
|
|
|
// Debug flags.
|
|
|
|
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
|
|
cl::init(0));
|
|
|
|
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
|
|
cl::desc("Debug func"));
|
|
|
|
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
|
|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
|
|
|
|
namespace {
|
|
|
|
/// This struct defines the shadow mapping using the rule:
|
|
/// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
|
|
struct ShadowMapping {
|
|
ShadowMapping() {
|
|
Scale = ClMappingScale;
|
|
Granularity = ClMappingGranularity;
|
|
Mask = ~(Granularity - 1);
|
|
}
|
|
|
|
int Scale;
|
|
int Granularity;
|
|
uint64_t Mask; // Computed as ~(Granularity-1)
|
|
};
|
|
|
|
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
|
|
return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
|
|
: MemProfCtorAndDtorPriority;
|
|
}
|
|
|
|
struct InterestingMemoryAccess {
|
|
Value *Addr = nullptr;
|
|
bool IsWrite;
|
|
unsigned Alignment;
|
|
uint64_t TypeSize;
|
|
Value *MaybeMask = nullptr;
|
|
};
|
|
|
|
/// Instrument the code in module to profile memory accesses.
|
|
class MemProfiler {
|
|
public:
|
|
MemProfiler(Module &M) {
|
|
C = &(M.getContext());
|
|
LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
}
|
|
|
|
/// If it is an interesting memory access, populate information
|
|
/// about the access and return a InterestingMemoryAccess struct.
|
|
/// Otherwise return None.
|
|
Optional<InterestingMemoryAccess>
|
|
isInterestingMemoryAccess(Instruction *I) const;
|
|
|
|
void instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access);
|
|
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
|
|
Value *Addr, uint32_t TypeSize, bool IsWrite);
|
|
void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr,
|
|
unsigned Alignment, uint32_t TypeSize,
|
|
bool IsWrite);
|
|
void instrumentMemIntrinsic(MemIntrinsic *MI);
|
|
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
bool instrumentFunction(Function &F);
|
|
bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
|
|
bool insertDynamicShadowAtFunctionEntry(Function &F);
|
|
|
|
private:
|
|
void initializeCallbacks(Module &M);
|
|
|
|
LLVMContext *C;
|
|
int LongSize;
|
|
Type *IntptrTy;
|
|
ShadowMapping Mapping;
|
|
|
|
// These arrays is indexed by AccessIsWrite
|
|
FunctionCallee MemProfMemoryAccessCallback[2];
|
|
FunctionCallee MemProfMemoryAccessCallbackSized[2];
|
|
|
|
FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
|
|
Value *DynamicShadowOffset = nullptr;
|
|
};
|
|
|
|
class MemProfilerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit MemProfilerLegacyPass() : FunctionPass(ID) {
|
|
initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "MemProfilerFunctionPass"; }
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
MemProfiler Profiler(*F.getParent());
|
|
return Profiler.instrumentFunction(F);
|
|
}
|
|
};
|
|
|
|
class ModuleMemProfiler {
|
|
public:
|
|
ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
|
|
|
|
bool instrumentModule(Module &);
|
|
|
|
private:
|
|
Triple TargetTriple;
|
|
ShadowMapping Mapping;
|
|
Function *MemProfCtorFunction = nullptr;
|
|
};
|
|
|
|
class ModuleMemProfilerLegacyPass : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) {
|
|
initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "ModuleMemProfiler"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
ModuleMemProfiler MemProfiler(M);
|
|
return MemProfiler.instrumentModule(M);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemProfilerPass::MemProfilerPass() {}
|
|
|
|
PreservedAnalyses MemProfilerPass::run(Function &F,
|
|
AnalysisManager<Function> &AM) {
|
|
Module &M = *F.getParent();
|
|
MemProfiler Profiler(M);
|
|
if (Profiler.instrumentFunction(F))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
ModuleMemProfilerPass::ModuleMemProfilerPass() {}
|
|
|
|
PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
|
|
AnalysisManager<Module> &AM) {
|
|
ModuleMemProfiler Profiler(M);
|
|
if (Profiler.instrumentModule(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char MemProfilerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof",
|
|
"MemProfiler: profile memory allocations and accesses.",
|
|
false, false)
|
|
INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof",
|
|
"MemProfiler: profile memory allocations and accesses.",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createMemProfilerFunctionPass() {
|
|
return new MemProfilerLegacyPass();
|
|
}
|
|
|
|
char ModuleMemProfilerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module",
|
|
"MemProfiler: profile memory allocations and accesses."
|
|
"ModulePass",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createModuleMemProfilerLegacyPassPass() {
|
|
return new ModuleMemProfilerLegacyPass();
|
|
}
|
|
|
|
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
|
|
// (Shadow & mask) >> scale
|
|
Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
|
|
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
|
|
// (Shadow >> scale) | offset
|
|
assert(DynamicShadowOffset);
|
|
return IRB.CreateAdd(Shadow, DynamicShadowOffset);
|
|
}
|
|
|
|
// Instrument memset/memmove/memcpy
|
|
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
|
|
IRBuilder<> IRB(MI);
|
|
if (isa<MemTransferInst>(MI)) {
|
|
IRB.CreateCall(
|
|
isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
|
|
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
} else if (isa<MemSetInst>(MI)) {
|
|
IRB.CreateCall(
|
|
MemProfMemset,
|
|
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
Optional<InterestingMemoryAccess>
|
|
MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
|
|
// Do not instrument the load fetching the dynamic shadow address.
|
|
if (DynamicShadowOffset == I)
|
|
return None;
|
|
|
|
InterestingMemoryAccess Access;
|
|
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!ClInstrumentReads)
|
|
return None;
|
|
Access.IsWrite = false;
|
|
Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
|
|
Access.Alignment = LI->getAlignment();
|
|
Access.Addr = LI->getPointerOperand();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!ClInstrumentWrites)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
|
|
Access.Alignment = SI->getAlignment();
|
|
Access.Addr = SI->getPointerOperand();
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
|
|
Access.Alignment = 0;
|
|
Access.Addr = RMW->getPointerOperand();
|
|
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return None;
|
|
Access.IsWrite = true;
|
|
Access.TypeSize =
|
|
DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
|
|
Access.Alignment = 0;
|
|
Access.Addr = XCHG->getPointerOperand();
|
|
} else if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
auto *F = CI->getCalledFunction();
|
|
if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
|
|
F->getIntrinsicID() == Intrinsic::masked_store)) {
|
|
unsigned OpOffset = 0;
|
|
if (F->getIntrinsicID() == Intrinsic::masked_store) {
|
|
if (!ClInstrumentWrites)
|
|
return None;
|
|
// Masked store has an initial operand for the value.
|
|
OpOffset = 1;
|
|
Access.IsWrite = true;
|
|
} else {
|
|
if (!ClInstrumentReads)
|
|
return None;
|
|
Access.IsWrite = false;
|
|
}
|
|
|
|
auto *BasePtr = CI->getOperand(0 + OpOffset);
|
|
auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType();
|
|
Access.TypeSize = DL.getTypeStoreSizeInBits(Ty);
|
|
if (auto *AlignmentConstant =
|
|
dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
|
|
Access.Alignment = (unsigned)AlignmentConstant->getZExtValue();
|
|
else
|
|
Access.Alignment = 1; // No alignment guarantees. We probably got Undef
|
|
Access.MaybeMask = CI->getOperand(2 + OpOffset);
|
|
Access.Addr = BasePtr;
|
|
}
|
|
}
|
|
|
|
if (!Access.Addr)
|
|
return None;
|
|
|
|
// Do not instrument acesses from different address spaces; we cannot deal
|
|
// with them.
|
|
Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
|
|
if (PtrTy->getPointerAddressSpace() != 0)
|
|
return None;
|
|
|
|
// Ignore swifterror addresses.
|
|
// swifterror memory addresses are mem2reg promoted by instruction
|
|
// selection. As such they cannot have regular uses like an instrumentation
|
|
// function and it makes no sense to track them as memory.
|
|
if (Access.Addr->isSwiftError())
|
|
return None;
|
|
|
|
return Access;
|
|
}
|
|
|
|
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr,
|
|
unsigned Alignment,
|
|
uint32_t TypeSize, bool IsWrite) {
|
|
auto *VTy = cast<FixedVectorType>(
|
|
cast<PointerType>(Addr->getType())->getElementType());
|
|
uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
|
|
unsigned Num = VTy->getNumElements();
|
|
auto *Zero = ConstantInt::get(IntptrTy, 0);
|
|
for (unsigned Idx = 0; Idx < Num; ++Idx) {
|
|
Value *InstrumentedAddress = nullptr;
|
|
Instruction *InsertBefore = I;
|
|
if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
|
|
// dyn_cast as we might get UndefValue
|
|
if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
|
|
if (Masked->isZero())
|
|
// Mask is constant false, so no instrumentation needed.
|
|
continue;
|
|
// If we have a true or undef value, fall through to instrumentAddress.
|
|
// with InsertBefore == I
|
|
}
|
|
} else {
|
|
IRBuilder<> IRB(I);
|
|
Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
|
|
Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
|
|
InsertBefore = ThenTerm;
|
|
}
|
|
|
|
IRBuilder<> IRB(InsertBefore);
|
|
InstrumentedAddress =
|
|
IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
|
|
instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize,
|
|
IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access) {
|
|
if (Access.IsWrite)
|
|
NumInstrumentedWrites++;
|
|
else
|
|
NumInstrumentedReads++;
|
|
|
|
if (Access.MaybeMask) {
|
|
instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
|
|
Access.Alignment, Access.TypeSize,
|
|
Access.IsWrite);
|
|
} else {
|
|
// Since the access counts will be accumulated across the entire allocation,
|
|
// we only update the shadow access count for the first location and thus
|
|
// don't need to worry about alignment and type size.
|
|
instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentAddress(Instruction *OrigIns,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
uint32_t TypeSize, bool IsWrite) {
|
|
IRBuilder<> IRB(InsertBefore);
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
|
|
if (ClUseCalls) {
|
|
IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
|
|
return;
|
|
}
|
|
|
|
// Create an inline sequence to compute shadow location, and increment the
|
|
// value by one.
|
|
Type *ShadowTy = Type::getInt64Ty(*C);
|
|
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
|
|
Value *ShadowPtr = memToShadow(AddrLong, IRB);
|
|
Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
|
|
Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
|
|
Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1);
|
|
ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
|
|
IRB.CreateStore(ShadowValue, ShadowAddr);
|
|
}
|
|
|
|
// Create the variable for the profile file name.
|
|
void createProfileFileNameVar(Module &M) {
|
|
const MDString *MemProfFilename =
|
|
dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
|
|
if (!MemProfFilename)
|
|
return;
|
|
assert(!MemProfFilename->getString().empty() &&
|
|
"Unexpected MemProfProfileFilename metadata with empty string");
|
|
Constant *ProfileNameConst = ConstantDataArray::getString(
|
|
M.getContext(), MemProfFilename->getString(), true);
|
|
GlobalVariable *ProfileNameVar = new GlobalVariable(
|
|
M, ProfileNameConst->getType(), /*isConstant=*/true,
|
|
GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.supportsCOMDAT()) {
|
|
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
|
|
}
|
|
}
|
|
|
|
bool ModuleMemProfiler::instrumentModule(Module &M) {
|
|
// Create a module constructor.
|
|
std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
|
|
std::string VersionCheckName =
|
|
ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
|
|
: "";
|
|
std::tie(MemProfCtorFunction, std::ignore) =
|
|
createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
|
|
MemProfInitName, /*InitArgTypes=*/{},
|
|
/*InitArgs=*/{}, VersionCheckName);
|
|
|
|
const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
|
|
appendToGlobalCtors(M, MemProfCtorFunction, Priority);
|
|
|
|
createProfileFileNameVar(M);
|
|
|
|
return true;
|
|
}
|
|
|
|
void MemProfiler::initializeCallbacks(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
|
|
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
|
|
const std::string TypeStr = AccessIsWrite ? "store" : "load";
|
|
|
|
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
|
|
SmallVector<Type *, 2> Args1{1, IntptrTy};
|
|
MemProfMemoryAccessCallbackSized[AccessIsWrite] =
|
|
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N",
|
|
FunctionType::get(IRB.getVoidTy(), Args2, false));
|
|
|
|
MemProfMemoryAccessCallback[AccessIsWrite] =
|
|
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args1, false));
|
|
}
|
|
MemProfMemmove = M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
|
|
MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy);
|
|
MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset",
|
|
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt32Ty(), IntptrTy);
|
|
}
|
|
|
|
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
|
|
// For each NSObject descendant having a +load method, this method is invoked
|
|
// by the ObjC runtime before any of the static constructors is called.
|
|
// Therefore we need to instrument such methods with a call to __memprof_init
|
|
// at the beginning in order to initialize our runtime before any access to
|
|
// the shadow memory.
|
|
// We cannot just ignore these methods, because they may call other
|
|
// instrumented functions.
|
|
if (F.getName().find(" load]") != std::string::npos) {
|
|
FunctionCallee MemProfInitFunction =
|
|
declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
|
|
IRBuilder<> IRB(&F.front(), F.front().begin());
|
|
IRB.CreateCall(MemProfInitFunction, {});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
|
|
IRBuilder<> IRB(&F.front().front());
|
|
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
|
|
MemProfShadowMemoryDynamicAddress, IntptrTy);
|
|
DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
|
|
return true;
|
|
}
|
|
|
|
bool MemProfiler::instrumentFunction(Function &F) {
|
|
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
|
|
return false;
|
|
if (ClDebugFunc == F.getName())
|
|
return false;
|
|
if (F.getName().startswith("__memprof_"))
|
|
return false;
|
|
|
|
bool FunctionModified = false;
|
|
|
|
// If needed, insert __memprof_init.
|
|
// This function needs to be called even if the function body is not
|
|
// instrumented.
|
|
if (maybeInsertMemProfInitAtFunctionEntry(F))
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
|
|
|
|
initializeCallbacks(*F.getParent());
|
|
|
|
FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
|
|
|
|
SmallVector<Instruction *, 16> ToInstrument;
|
|
|
|
// Fill the set of memory operations to instrument.
|
|
for (auto &BB : F) {
|
|
for (auto &Inst : BB) {
|
|
if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
|
|
ToInstrument.push_back(&Inst);
|
|
}
|
|
}
|
|
|
|
int NumInstrumented = 0;
|
|
for (auto *Inst : ToInstrument) {
|
|
if (ClDebugMin < 0 || ClDebugMax < 0 ||
|
|
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
|
|
Optional<InterestingMemoryAccess> Access =
|
|
isInterestingMemoryAccess(Inst);
|
|
if (Access)
|
|
instrumentMop(Inst, F.getParent()->getDataLayout(), *Access);
|
|
else
|
|
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
|
|
}
|
|
NumInstrumented++;
|
|
}
|
|
|
|
if (NumInstrumented > 0)
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
|
|
<< F << "\n");
|
|
|
|
return FunctionModified;
|
|
}
|