This commit contains several code changes which are ultimately required for converting the varions `Merger` identifiers from typedefs to newtypes. The actual implementation of the newtypes themselves has been split off into separate commits, in hopes of simplifying the review process. Depends On D146561 Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D146684
1957 lines
80 KiB
C++
1957 lines
80 KiB
C++
//===- Sparsification.cpp - Implementation of sparsification --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements converting sparse tensor types to actual sparse code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenEnv.h"
|
|
#include "CodegenUtils.h"
|
|
#include "LoopEmitter.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TensorEncoding.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Iteration graph sorting.
|
|
enum class SortMask : unsigned {
|
|
// The individual mask bits.
|
|
kIncludeDenseOutput = 0x1, // b001
|
|
kIncludeDenseInput = 0x2, // b010
|
|
kIncludeUndef = 0x4, // b100
|
|
// The subsets of mask bits.
|
|
kIncludeAll = 0x7, // b111
|
|
kIncludeDense = 0x3, // b011
|
|
kSparseOnly = 0x0, // b000
|
|
};
|
|
|
|
inline static bool includesAny(SortMask mask1, SortMask mask2) {
|
|
return static_cast<unsigned>(mask1) & static_cast<unsigned>(mask2);
|
|
}
|
|
|
|
inline static bool includesDenseInput(SortMask mask) {
|
|
return includesAny(mask, SortMask::kIncludeDenseInput);
|
|
}
|
|
|
|
inline static bool includesDenseOutput(SortMask mask) {
|
|
return includesAny(mask, SortMask::kIncludeDenseOutput);
|
|
}
|
|
|
|
inline static bool includesDense(SortMask mask) {
|
|
return includesAny(mask, SortMask::kIncludeDense);
|
|
}
|
|
|
|
inline static bool includesUndef(SortMask mask) {
|
|
return includesAny(mask, SortMask::kIncludeUndef);
|
|
}
|
|
|
|
/// A helper class that visits an affine expression and tries to find an
|
|
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
|
|
/// the desired iterator type.
|
|
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
|
|
public:
|
|
explicit AffineDimFinder(linalg::GenericOp op)
|
|
: iterTypes(op.getIteratorTypesArray()) {}
|
|
void visitDimExpr(AffineDimExpr expr) {
|
|
if (pickedDim == nullptr || pickIterType == iterTypes[expr.getPosition()]) {
|
|
pickedDim = expr;
|
|
}
|
|
}
|
|
|
|
/// Set the desired iterator type that we want to pick.
|
|
void setPickedIterType(utils::IteratorType iterType) {
|
|
pickIterType = iterType;
|
|
}
|
|
|
|
/// Get the desired AffineDimExpr.
|
|
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
|
|
|
|
private:
|
|
/// The picked AffineDimExpr after visit. This must be stored as
|
|
/// `AffineExpr` rather than `AffineDimExpr`, because the latter
|
|
/// doesn't have a default ctor.
|
|
AffineExpr pickedDim;
|
|
/// The iterator type that we want.
|
|
utils::IteratorType pickIterType;
|
|
/// The mapping between dim=>iterator type.
|
|
SmallVector<utils::IteratorType> iterTypes;
|
|
};
|
|
|
|
// Flattens an affine expression into a list of AffineDimExprs.
|
|
struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
|
|
void visitDimExpr(AffineDimExpr expr) { dims.push_back(expr); }
|
|
SmallVector<AffineDimExpr> dims;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler analysis methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: the "idx"-vs-"ldx" naming convention is not self-explanatory,
|
|
// and those letters are too easy to confuse visually. We should switch
|
|
// to a more self-explanatory naming convention like "curLoop"-vs-"prevLoop"
|
|
// (assuming that's the actual meaning behind the "idx"-vs-"ldx" convention).
|
|
|
|
/// Determines if affine expression is invariant.
|
|
static bool isInvariantAffine(AffineExpr a, ArrayRef<LoopId> loopStack,
|
|
LoopId ldx, bool &isAtLoop) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
const LoopId i = a.cast<AffineDimExpr>().getPosition();
|
|
if (i == ldx) {
|
|
isAtLoop = true;
|
|
// Must be invariant if we are at the given loop.
|
|
return true;
|
|
}
|
|
bool isInvariant = false;
|
|
for (LoopId l : loopStack) {
|
|
isInvariant = (l == i);
|
|
if (isInvariant)
|
|
break;
|
|
}
|
|
return isInvariant;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, isAtLoop) &&
|
|
isInvariantAffine(binOp.getRHS(), loopStack, ldx, isAtLoop);
|
|
}
|
|
default: {
|
|
assert(a.isa<AffineConstantExpr>());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if affine expression is invariant.
|
|
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, LoopId ldx,
|
|
bool &isAtLoop) {
|
|
return isInvariantAffine(a, env.getCurrentLoopStack(), ldx, isAtLoop);
|
|
}
|
|
|
|
/// Helper method to construct a permuted dimension ordering
|
|
/// that adheres to the given topological sort.
|
|
//
|
|
// FIXME: does the above actually mean "dimensions", or should it say
|
|
// "level ordering"? The same dim/lvl confusion applies to all the code
|
|
// and comments in the definition below.
|
|
static AffineMap permute(CodegenEnv &env, AffineMap m) {
|
|
assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
|
|
env.topSortSize() &&
|
|
"size mismatch");
|
|
// Construct the inverse of `m`; to avoid the asymptotic complexity
|
|
// of calling `m.getPermutedPosition` repeatedly.
|
|
//
|
|
// The variable `perm` must use `unsigned` rather than `Dimension`/`Level`,
|
|
// because that's what `AffineMap::getPermutationMap` requires.
|
|
// TODO: however, `perm` should be renamed to make clear what exactly
|
|
// it's storing a permutation of.
|
|
SmallVector<unsigned> perm;
|
|
const unsigned numResults = m.getNumResults();
|
|
BitVector worklist(numResults, true);
|
|
LoopOrd loopDepth = 1;
|
|
|
|
// Construct the permutation.
|
|
while (worklist.any() && loopDepth <= env.topSortSize()) {
|
|
const unsigned preSize = perm.size();
|
|
for (unsigned dim : worklist.set_bits()) {
|
|
bool isAtLoop = false;
|
|
if (m.getResult(dim).isa<AffineConstantExpr>() ||
|
|
(isInvariantAffine(m.getResult(dim), env.getLoopStackUpTo(loopDepth),
|
|
env.topSortAt(loopDepth - 1), isAtLoop) &&
|
|
isAtLoop)) {
|
|
// If the matching affine is constant expression or just become
|
|
// invariant. We can visit the dimension now without breaking the
|
|
// topSort constraint.
|
|
perm.push_back(dim);
|
|
}
|
|
}
|
|
|
|
// Removes resolved dimension.
|
|
for (unsigned i = preSize, e = perm.size(); i < e; i++)
|
|
worklist.reset(perm[i]);
|
|
|
|
// Try entering the next loop in the stack.
|
|
loopDepth++;
|
|
}
|
|
|
|
assert(perm.size() == numResults);
|
|
return AffineMap::getPermutationMap(perm, env.op().getContext());
|
|
}
|
|
|
|
/// Helper method to inspect affine expressions. Rejects cases where the
|
|
/// same index is used more than once. Also rejects compound affine
|
|
/// expressions in sparse dimensions.
|
|
/// filterIdx stores the current filter loop idx should be used for the next
|
|
/// compound affine sparse level, and it will be incremented by one when
|
|
/// used.
|
|
static bool findAffine(Merger &merger, TensorId tid, Level lvl, AffineExpr a,
|
|
DimLevelType dlt, LoopId &filterLdx,
|
|
bool setLvlFormat = true) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
const LoopId idx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
|
|
if (!isUndefDLT(merger.getDimLevelType(tid, idx)))
|
|
return false; // used more than once
|
|
|
|
if (setLvlFormat)
|
|
merger.setLevelAndType(tid, idx, lvl, dlt);
|
|
return true;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul:
|
|
case AffineExprKind::Constant: {
|
|
if (!isDenseDLT(dlt) && setLvlFormat) {
|
|
assert(isUndefDLT(merger.getDimLevelType(tid, filterLdx)));
|
|
// Use a filter loop for sparse affine expression.
|
|
merger.setLevelAndType(tid, filterLdx, lvl, dlt);
|
|
++filterLdx;
|
|
}
|
|
|
|
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
|
|
// We do not set dim level format for affine expresssion like d0 + d1 on
|
|
// either loop index at d0 or d1.
|
|
// We continue the recursion merely to check whether current affine is
|
|
// admissible or not.
|
|
return findAffine(merger, tid, lvl, binOp.getLHS(), dlt, filterLdx,
|
|
false) &&
|
|
findAffine(merger, tid, lvl, binOp.getRHS(), dlt, filterLdx,
|
|
false);
|
|
}
|
|
// Falls through when it is a constant Affine
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Helper method to inspect affine expressions for index variable reduction
|
|
/// based codegen. It finds the dependent index set for all tensor levels in the
|
|
/// current expression we are generating.
|
|
///
|
|
/// For example, when handling A[i+j][j+k], we build the two way mapping in
|
|
/// merger between (tensor, level) pairs and their dependent index variable set:
|
|
/// A_0 <=> [i, j] and A_1 <=> [j, k]
|
|
///
|
|
/// It rejects cases (returns false)
|
|
/// 1st, when the same index is used more than once, e.g., A[i+j][i]
|
|
/// 2nd, when multiplication is used in the non-trivial index expression.
|
|
/// 3rd, when a constant operand is used in the non-trivial index expression.
|
|
///
|
|
/// TODO: constant should be easy to handle.
|
|
static bool findDepIdxSet(Merger &merger, TensorId tensor, Level lvl,
|
|
AffineExpr a, DimLevelType dlt,
|
|
bool isSubExp = false) {
|
|
switch (a.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
const LoopId ldx = merger.makeLoopId(a.cast<AffineDimExpr>().getPosition());
|
|
if (!isUndefDLT(merger.getDimLevelType(tensor, ldx)))
|
|
return false; // used more than once, e.g., A[i][i]
|
|
|
|
// TODO: Generalizes the following two cases. A[i] (with trivial index
|
|
// expression) can be treated as a special affine index expression. We do
|
|
// not necessarily need to differentiate them.
|
|
if (!isSubExp)
|
|
merger.setLevelAndType(tensor, ldx, lvl, dlt);
|
|
|
|
if (isSubExp) {
|
|
// The current loops appears in more than one affine expressions on the
|
|
// same tensor. We can not handle this case. e.g., A[i+j][i+k], `i` is
|
|
// used twice.
|
|
if (merger.hasDependentLvl(ldx, tensor)) {
|
|
// TODO: This can be supported by coiterate slices if the loop idx is
|
|
// appeared on affine index for different tensor, or take slice on
|
|
// mulitple dimensions when it is on the same tensor.
|
|
// E.g.,
|
|
// `d0 + d1` for indexing t0[lvl0] and `d0 + d2` for indexing t1[lvl0]
|
|
// d0_1 = getNextSliceOffset t0 along lvl0
|
|
// d0_2 = getNextSliceOffset t1 along lvl0
|
|
// if d0_1 == d0_2 then d0 = d0_1 = d0_1
|
|
// else increase min(d0_1, d0_2).
|
|
return false;
|
|
}
|
|
merger.setLoopDependentTensorLevel(ldx, tensor, lvl);
|
|
}
|
|
return true;
|
|
}
|
|
case AffineExprKind::Constant:
|
|
case AffineExprKind::Mul:
|
|
// TODO: Support Mul and Constant AffineExp for slice-based codegen
|
|
return false;
|
|
case AffineExprKind::Add: {
|
|
auto binOp = a.cast<AffineBinaryOpExpr>();
|
|
return findDepIdxSet(merger, tensor, lvl, binOp.getLHS(), dlt, true) &&
|
|
findDepIdxSet(merger, tensor, lvl, binOp.getRHS(), dlt, true);
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Get the total number of compound affine expressions in the
|
|
/// `getMatchingIndexingMap` for the given tensor. For the following inputs:
|
|
///
|
|
/// map = (d0, d1, d2) => (d0 + d1, d2)
|
|
/// lvlTypes = ["compressed", "compressed"]
|
|
///
|
|
/// Returns 1 (because the first level is compressed and its corresponding
|
|
/// indexing-expression is `d0 + d1`)
|
|
static unsigned getNumNonTrivialIdxExpOnSparseLvls(AffineMap map,
|
|
Value tensor) {
|
|
// The `tensor` is not guaranted to have `RankedTensorType`, therefore
|
|
// we can't use `getRankedTensorType`/`getSparseTensorType` here.
|
|
// However, we don't need to handle `StorageSpecifierType`, so we
|
|
// can use `SparseTensorType` once we guard against non-tensors.
|
|
const auto rtp = tensor.getType().dyn_cast<RankedTensorType>();
|
|
if (!rtp)
|
|
return 0;
|
|
const SparseTensorType stt(rtp);
|
|
|
|
// FIXME: There's some dim/lvl confusion here. The previous version of
|
|
// the code asserted that there are `lvlRank`-many expressions, but then
|
|
// the `exprs[d]` expression assumes there are in fact `dimRank`-many
|
|
// expressions. Even though `ArrayRef::operator[]` will check for OOB,
|
|
// the mismatch between the assertion and the usage belies that this code
|
|
// cannot support non-permutations.
|
|
//
|
|
// Elsewhere in this file the maps returned by
|
|
// `linalg::GenericOp::getMatchingIndexingMap` are inconsistent about
|
|
// whether they're expected to have `lvlRank`-many or `dimRank`-many
|
|
// expressions (cf., `genSubscript` vs `findSparseAnnotations`);
|
|
// so those are no help in determining which is actually intended.
|
|
//
|
|
// For now we work around this problem by asserting the two ranks agree.
|
|
const Dimension dimRank = stt.getDimRank();
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(dimRank == lvlRank && "Non-permutations not currently supported");
|
|
const auto exprs = map.getResults();
|
|
assert(static_cast<Dimension>(exprs.size()) == dimRank &&
|
|
"AffineMap does not have dimension-rank many results");
|
|
(void)dimRank;
|
|
unsigned num = 0;
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
const Dimension d = toOrigDim(stt.getEncoding(), l);
|
|
if (!exprs[d].isa<AffineDimExpr>() && !stt.isDenseLvl(l))
|
|
num++;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
/// Get the total number of sparse levels with compound affine
|
|
/// expressions, summed over all operands of the `GenericOp`.
|
|
static unsigned getNumNonTrivialIdxExpOnSparseLvls(linalg::GenericOp op) {
|
|
unsigned num = 0;
|
|
for (OpOperand &t : op->getOpOperands())
|
|
num += getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(&t),
|
|
t.get());
|
|
return num;
|
|
}
|
|
|
|
static bool hasNonTrivialAffineOnSparseOut(linalg::GenericOp op) {
|
|
OpOperand *out = op.getDpsInitOperand(0);
|
|
if (getSparseTensorType(out->get()).isAllDense())
|
|
return false;
|
|
return getNumNonTrivialIdxExpOnSparseLvls(op.getMatchingIndexingMap(out),
|
|
out->get());
|
|
}
|
|
|
|
/// Helper method to inspect sparse encodings in the tensor types.
|
|
/// Fills the per-dimension sparsity information for all tensors.
|
|
/// Returns true if the sparse annotations and affine subscript
|
|
/// expressions of all tensors are admissible. Returns false if
|
|
/// no annotations are found or inadmissible constructs occur.
|
|
/// We currently support two different ways to handle non-trivial index
|
|
/// expression on sparse tensors, and they accept different affine expressions.
|
|
/// When using filter-loop-based approach, it accept (almost) arbitrary affine
|
|
/// index expression on sparse tensor but it is much less efficient, and will be
|
|
/// gradually removed from the codebase.
|
|
/// When using dependent index reducton-based approach, it currently only
|
|
/// supports affine addition index expression.
|
|
static bool findSparseAnnotations(CodegenEnv &env, bool idxReducBased) {
|
|
bool annotated = false;
|
|
// `filterLdx` may be mutated by `findAffine`.
|
|
LoopId filterLdx = env.merger().getStartingFilterLoopId();
|
|
for (OpOperand &t : env.op()->getOpOperands()) {
|
|
const TensorId tid = env.makeTensorId(t.getOperandNumber());
|
|
const auto map = env.op().getMatchingIndexingMap(&t);
|
|
const auto enc = getSparseTensorEncoding(t.get().getType());
|
|
if (enc)
|
|
annotated = true;
|
|
|
|
const Level lvlRank = map.getNumResults();
|
|
assert(!enc || lvlRank == enc.getLvlRank());
|
|
assert(static_cast<Level>(env.op().getRank(&t)) == lvlRank);
|
|
|
|
// We only need to do index reduction if there is at least one non-trivial
|
|
// index expression on sparse levels.
|
|
// If all non-trivial index expression is on dense levels, we can
|
|
// efficiently rely on the random access to locate the element.
|
|
bool needIdxReduc =
|
|
enc && getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) != 0;
|
|
// If then current tensor being inspected requires affine index, it need
|
|
// to be sliced.
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
const AffineExpr a = map.getResult(toOrigDim(enc, l));
|
|
const DimLevelType dlt = enc.getLvlType(l);
|
|
if (idxReducBased && needIdxReduc) {
|
|
if (!findDepIdxSet(env.merger(), tid, l, a, dlt))
|
|
return false; // inadmissible affine expression
|
|
} else {
|
|
if (!findAffine(env.merger(), tid, l, a, dlt, filterLdx))
|
|
return false; // inadmissible affine expression
|
|
}
|
|
}
|
|
}
|
|
assert(filterLdx == env.merger().getNumLoops());
|
|
return annotated;
|
|
}
|
|
|
|
/// A helper to compute a topological sort. O(n^2) time complexity
|
|
/// as we use adj matrix for the graph.
|
|
/// The sorted result will put the first Reduction iterator to the
|
|
/// latest possible `LoopOrd`.
|
|
///
|
|
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
|
|
/// `(LoopId,LoopId)`.
|
|
static bool topSortOptimal(CodegenEnv &env,
|
|
ArrayRef<utils::IteratorType> iteratorTypes,
|
|
std::vector<unsigned> &inDegree,
|
|
std::vector<std::vector<bool>> &adjM) {
|
|
std::vector<LoopId> redIt; // reduce iterator with 0 degree
|
|
std::vector<LoopId> parIt; // parallel iterator with 0 degree
|
|
std::vector<LoopId> filterIt; // filter loop with 0 degree
|
|
const LoopId numLoops = env.merger().getNumLoops();
|
|
for (LoopId i = 0; i < numLoops; i++) {
|
|
if (inDegree[i] == 0) {
|
|
if (env.merger().isFilterLoop(i))
|
|
filterIt.push_back(i);
|
|
else if (linalg::isReductionIterator(iteratorTypes[i]))
|
|
redIt.push_back(i);
|
|
else
|
|
parIt.push_back(i);
|
|
}
|
|
}
|
|
|
|
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
|
|
// We always choose in order of filter loop -> parallel loop -> reduction
|
|
// loop because
|
|
// 1. Putting reduction loop early might make the loop sequence
|
|
// inadmissible.
|
|
// 2. Filter loops should be put as early as possible for better
|
|
// performance, since only one (if any) iteration will carry the
|
|
// computation. E.g., for (1 to N)
|
|
// for (1 to M)
|
|
// for (1 to K)
|
|
// if (xxx)
|
|
// O(X) computation => O(NMK+NMX) time complexity
|
|
//
|
|
// By putting the filter loop one level up, we got
|
|
//
|
|
// for (1 to N)
|
|
// for (1 to K)
|
|
// if (xxx)
|
|
// for (1 to M)
|
|
// O(X) computation => O(NK+NMX) time complexity
|
|
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
|
|
auto src = it.back();
|
|
env.topSortPushBack(src);
|
|
it.pop_back();
|
|
// Update in-degree, and push 0-degree node into worklist.
|
|
for (LoopId dst = 0; dst < numLoops; dst++) {
|
|
if (adjM[src][dst] && --inDegree[dst] == 0) {
|
|
if (env.merger().isFilterLoop(dst))
|
|
filterIt.push_back(dst);
|
|
else if (linalg::isReductionIterator(iteratorTypes[dst]))
|
|
redIt.push_back(dst);
|
|
else
|
|
parIt.push_back(dst);
|
|
}
|
|
}
|
|
}
|
|
return env.topSortSize() == numLoops;
|
|
}
|
|
|
|
/// Helper method to add all constraints from the indices in one affine
|
|
/// expression before all indices in the other affine expression. For
|
|
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
|
|
/// The affine expression `a` is empty iff `fidx` have a value, leading to
|
|
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
|
|
/// The affine expression `b` is empty iff `tidx` have a value, leading to
|
|
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
|
|
///
|
|
/// The `inDegree` is indexed by `LoopId`, and the `adjM` is indexed by
|
|
/// `(LoopId,LoopId)`.
|
|
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
|
|
std::vector<unsigned> &inDegree, AffineExpr a,
|
|
AffineExpr b, std::optional<LoopId> fidx,
|
|
std::optional<LoopId> tidx) {
|
|
if (!a && !b) {
|
|
// Recursion leaf.
|
|
assert(fidx && tidx);
|
|
const LoopId f = *fidx, t = *tidx;
|
|
if (!adjM[f][t]) {
|
|
adjM[f][t] = true;
|
|
inDegree[t]++;
|
|
}
|
|
return;
|
|
}
|
|
// Picks an affine expression and expand (recurse into) it.
|
|
const auto toExpand = a ? a : b;
|
|
switch (toExpand.getKind()) {
|
|
case AffineExprKind::DimId: {
|
|
const std::optional<LoopId> idx{
|
|
toExpand.cast<AffineDimExpr>().getPosition()};
|
|
if (toExpand == a)
|
|
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
|
|
else // toExpand == b
|
|
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
|
|
break;
|
|
}
|
|
case AffineExprKind::Add:
|
|
case AffineExprKind::Mul: {
|
|
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
|
|
if (toExpand == a) {
|
|
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
|
|
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
|
|
} else {
|
|
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
|
|
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void tryRelaxAffineConstraints(linalg::GenericOp op,
|
|
std::optional<LoopId> &fldx,
|
|
AffineExpr &fa,
|
|
std::optional<LoopId> &tldx,
|
|
AffineExpr &ta) {
|
|
// We use a heuristic here to only pick one dim expression from each
|
|
// compound affine expression to establish the order between two dense
|
|
// dimensions.
|
|
if (!tldx) {
|
|
AffineDimFinder finder(op);
|
|
// NOTE: The ordering can only be loosen when the destination level is
|
|
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
|
|
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
|
|
// no ordering like d0->d2->d1).
|
|
// TODO: this is obviously a sub optimal solution.
|
|
if (!fldx && !fa.isa<AffineConstantExpr>()) {
|
|
// Heuristic: we prefer parallel loop for lhs to reduce the chance
|
|
// we add reduce < parallel ordering.
|
|
finder.setPickedIterType(utils::IteratorType::parallel);
|
|
finder.walkPostOrder(fa);
|
|
fa = finder.getDimExpr();
|
|
fldx = finder.getDimExpr().getPosition();
|
|
}
|
|
if (!ta.isa<AffineConstantExpr>()) {
|
|
// Heuristic: we prefer reduction loop for rhs to reduce the chance
|
|
// adding reduce < parallel ordering.
|
|
finder.setPickedIterType(utils::IteratorType::reduction);
|
|
finder.walkPostOrder(ta);
|
|
ta = finder.getDimExpr();
|
|
tldx = finder.getDimExpr().getPosition();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void addFilterLoopBasedConstraints(CodegenEnv &env, OpOperand &t,
|
|
OpOperand *skip, SortMask mask,
|
|
std::vector<std::vector<bool>> &adjM,
|
|
std::vector<unsigned> &inDegree) {
|
|
// Get map, encoding, and tensor-identifier.
|
|
const auto map = env.op().getMatchingIndexingMap(&t);
|
|
const auto enc = getSparseTensorEncoding(t.get().getType());
|
|
const TensorId tid = env.makeTensorId(t.getOperandNumber());
|
|
|
|
// Each tensor expression and optional dimension ordering (row-major
|
|
// by default) puts an ordering constraint on the loop indices. For
|
|
// example, the tensor expresion A_ijk forces the ordering i < j < k
|
|
// on the loop indices if no explicit dimension ordering is given.
|
|
const Level lvlRank = map.getNumResults();
|
|
assert(!enc || lvlRank == enc.getLvlRank());
|
|
for (Level lvl = 0; lvl < lvlRank; lvl++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
|
|
std::optional<LoopId> tldx = env.merger().getLoopId(tid, lvl);
|
|
// Filter loops should be constructed after all the dependent loops,
|
|
// i.e., d0 + d1 < filter_loop(d0 + d1)
|
|
if (tldx && env.merger().isFilterLoop(*tldx)) {
|
|
assert(!ta.isa<AffineDimExpr>() &&
|
|
!isDenseDLT(enc.getDimLevelType()[lvl]));
|
|
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt, tldx);
|
|
// Now that the ordering of affine expression is captured by filter
|
|
// loop idx, we only need to ensure the affine ordering against filter
|
|
// loop. Thus, we reset the affine express to nil here to mark it as
|
|
// resolved.
|
|
ta = AffineExpr();
|
|
}
|
|
|
|
// Skip tensor during cycle resolution, though order between filter loop
|
|
// and dependent loops need to be guaranteed unconditionally.
|
|
if (&t == skip)
|
|
continue;
|
|
|
|
if (lvl > 0) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
|
|
std::optional<LoopId> fldx = env.merger().getLoopId(tid, lvl - 1);
|
|
|
|
// Applying order constraints on every pair of dimExpr between two
|
|
// compound affine expressions can sometime too strict:
|
|
// E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
|
|
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
|
|
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
|
|
// We also relax the affine constraint when use slice-based algorithm
|
|
// as there is no filter loop for affine index on sparse dimension.
|
|
// TODO: do we really need the condition?
|
|
if (!includesDense(mask))
|
|
tryRelaxAffineConstraints(env.op(), fldx, fa, tldx, ta);
|
|
|
|
// (d0 + d1) < (d2 + d3), or
|
|
// filter_loop_d-1 < (d2 + d3), or
|
|
// (d0 + d1) < filter_loop_d, or
|
|
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
|
|
// above.
|
|
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void addSliceBasedConstraints(CodegenEnv &env, OpOperand &t,
|
|
OpOperand *skip, SortMask mask,
|
|
std::vector<std::vector<bool>> &adjM,
|
|
std::vector<unsigned> &inDegree) {
|
|
// Get map and encoding.
|
|
const auto map = env.op().getMatchingIndexingMap(&t);
|
|
const auto enc = getSparseTensorEncoding(t.get().getType());
|
|
|
|
// No special treatment for simple indices.
|
|
if (getNumNonTrivialIdxExpOnSparseLvls(map, t.get()) == 0)
|
|
return addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
|
|
|
|
// Skip tensor during cycle resolution, though order between filter loop
|
|
// and dependent loops need to be guaranteed unconditionally.
|
|
if (&t == skip)
|
|
return;
|
|
|
|
AffineDimFinder finder(env.op());
|
|
finder.setPickedIterType(utils::IteratorType::reduction);
|
|
// To compute iteration graph for tensor[d0 + d1 + d3, d4 + d5 + d6],
|
|
// we requires there exist d_x \in {d0, d1, d3} and d_y \in {d4, d5, d6},
|
|
// and d_x > d_y && {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
|
|
const Level lvlRank = map.getNumResults();
|
|
assert(!enc || lvlRank == enc.getLvlRank());
|
|
for (Level lvl = 1; lvl < lvlRank; lvl++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
const AffineExpr fa = map.getResult(toOrigDim(enc, lvl - 1));
|
|
const AffineExpr ta = map.getResult(toOrigDim(enc, lvl));
|
|
|
|
// This is a heuristic, we pick an abitrary reduction loop from lhs and
|
|
// rhs and use them as d_x and d_y.
|
|
finder.walkPostOrder(fa);
|
|
const AffineDimExpr fexp = finder.getDimExpr();
|
|
const LoopId fldx = env.makeLoopId(fexp.getPosition());
|
|
|
|
finder.walkPostOrder(ta);
|
|
const AffineDimExpr texp = finder.getDimExpr();
|
|
const LoopId tldx = env.makeLoopId(texp.getPosition());
|
|
|
|
// d_x > d_y
|
|
if (!adjM[fldx][tldx]) {
|
|
adjM[fldx][tldx] = true;
|
|
inDegree[tldx]++;
|
|
}
|
|
|
|
AffineDimCollector fCollector;
|
|
fCollector.walkPostOrder(fa);
|
|
AffineDimCollector tCollector;
|
|
tCollector.walkPostOrder(ta);
|
|
|
|
// make sure dx and dy is the last;
|
|
for (auto fd : fCollector.dims) {
|
|
const LoopId f = env.makeLoopId(fd.getPosition());
|
|
if (f == fldx)
|
|
continue;
|
|
if (!adjM[f][fldx]) {
|
|
adjM[f][fldx] = true;
|
|
inDegree[fldx]++;
|
|
}
|
|
}
|
|
for (auto td : tCollector.dims) {
|
|
const LoopId t = env.makeLoopId(td.getPosition());
|
|
if (t == tldx)
|
|
continue;
|
|
if (!adjM[t][tldx]) {
|
|
adjM[t][tldx] = true;
|
|
inDegree[tldx]++;
|
|
}
|
|
}
|
|
// Since we only support affine addition, the order between two dim
|
|
// expression does not really matters.
|
|
// {d0, d1, d3} - d_x > {d4, d5, d6} - d_y
|
|
// This is to ensure that the affine expressions are reduced in sparse
|
|
// tensor level ordering.
|
|
// TODO: this ordering could probably be loosen if we support out-of-order
|
|
// reduction.
|
|
// TODO: the evaluation order need to be ensure to
|
|
// support affine multiplication.
|
|
for (auto fd : fCollector.dims) {
|
|
const LoopId f = env.makeLoopId(fd.getPosition());
|
|
if (f == fldx) // skip d_x
|
|
continue;
|
|
|
|
for (auto td : tCollector.dims) {
|
|
const LoopId t = env.makeLoopId(td.getPosition());
|
|
if (t == tldx) // skip d_y
|
|
continue;
|
|
if (!adjM[f][t]) {
|
|
adjM[f][t] = true;
|
|
inDegree[t]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Computes a topologically sorted iteration graph for the linalg operation.
|
|
/// Ensures all tensors are visited in natural index order. This is
|
|
/// essential for sparse storage formats since these only support access
|
|
/// along fixed dimensions. Even for dense storage formats, however, the natural
|
|
/// index order yields innermost unit-stride access with better spatial
|
|
/// locality.
|
|
static bool computeIterationGraph(CodegenEnv &env, SortMask mask,
|
|
OpOperand *skip, bool idxReducBased = false) {
|
|
// Set up an n x n from/to adjacency matrix of the iteration graph
|
|
// for the implicit loop indices i_0 .. i_n-1.
|
|
const unsigned numLoops = env.merger().getNumLoops();
|
|
std::vector<std::vector<bool>> adjM(numLoops,
|
|
std::vector<bool>(numLoops, false));
|
|
std::vector<unsigned> inDegree(numLoops, 0); // in-degree of each node.
|
|
const auto iteratorTypes = env.op().getIteratorTypesArray();
|
|
// Iterate over the indexing maps of every tensor in the tensor expression.
|
|
for (OpOperand &t : env.op()->getOpOperands()) {
|
|
// Get map and encoding.
|
|
const auto enc = getSparseTensorEncoding(t.get().getType());
|
|
assert(env.op().getMatchingIndexingMap(&t).getNumDims() +
|
|
getNumNonTrivialIdxExpOnSparseLvls(env.op()) ==
|
|
numLoops);
|
|
|
|
// Skips dense inputs/outputs when not requested.
|
|
const bool isDenseInput = !enc && env.op().isDpsInput(&t);
|
|
const bool isDenseOutput = !enc && !isDenseInput;
|
|
if ((isDenseInput && !includesDenseInput(mask)) ||
|
|
(isDenseOutput && !includesDenseOutput(mask)))
|
|
continue;
|
|
|
|
// Push unrelated loops into sparse iteration space, so these
|
|
// will be skipped more often.
|
|
// TODO: Do we really need this?
|
|
if (includesUndef(mask)) {
|
|
const TensorId tid = env.makeTensorId(t.getOperandNumber());
|
|
for (LoopId i = 0; i < numLoops; i++) {
|
|
const auto dltI = env.dlt(tid, i);
|
|
if (isCompressedDLT(dltI) || isSingletonDLT(dltI)) {
|
|
for (LoopId j = 0; j < numLoops; j++)
|
|
if (isUndefDLT(env.dlt(tid, j))) {
|
|
adjM[i][j] = true;
|
|
inDegree[j]++;
|
|
}
|
|
} else {
|
|
assert(isDenseDLT(dltI) || isUndefDLT(dltI));
|
|
}
|
|
}
|
|
}
|
|
// Push unrelated loops into sparse iteration space, so these
|
|
// will be skipped more often.
|
|
if (idxReducBased)
|
|
addSliceBasedConstraints(env, t, skip, mask, adjM, inDegree);
|
|
else
|
|
addFilterLoopBasedConstraints(env, t, skip, mask, adjM, inDegree);
|
|
}
|
|
// Topologically sort the iteration graph to determine loop order.
|
|
// Report failure for a cyclic iteration graph.
|
|
env.topSortClear(numLoops);
|
|
return topSortOptimal(env, iteratorTypes, inDegree, adjM);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (statements and expressions).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Local bufferization of all dense and sparse data structures.
|
|
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
|
|
|
|
env.emitter().initializeLoopEmit(
|
|
builder, loc,
|
|
/// Generates buffer for the output tensor.
|
|
/// Note that all sparse kernels assume that when all elements are written
|
|
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
|
|
/// to all zeroes and only nonzeroes values are computed and written out.
|
|
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
|
|
/// for the updates and no assumption on the original contents of the
|
|
/// output buffer is necessary.
|
|
[&op](OpBuilder &builder, Location loc, Value memref,
|
|
Value tensor) -> Value {
|
|
// Must not be a sparse tensor.
|
|
assert(!getSparseTensorEncoding(tensor.getType()));
|
|
// Two output tensor references should point to the same object.
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
assert(lhs->get() == tensor);
|
|
// An output tensor can simply materialize from the buffer of the tensor
|
|
// that appears in the outs() clause. For updates, this has the
|
|
// advantage that only the nonzero value are involved in the
|
|
// computation, keeping the operation O(nnz). In all other cases, we are
|
|
// forced to zero out the buffer to enforce the assumption above, which
|
|
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
|
|
// O(nnz) for matrices).
|
|
// TODO: use better analysis to avoid zeroing out the buffer?
|
|
bool isInit = op.isInitTensor(lhs);
|
|
Value init = memref;
|
|
if (!isInit) {
|
|
Value zero = constantZero(builder, loc,
|
|
getElementTypeOrSelf(tensor.getType()));
|
|
builder.create<linalg::FillOp>(loc, ValueRange{zero},
|
|
ValueRange{init});
|
|
}
|
|
return init;
|
|
});
|
|
}
|
|
|
|
/// Generates index for load/store on sparse tensor.
|
|
// FIXME: It's not entirely clear what "index" means here (i.e., is it
|
|
// a "coordinate", or "Ldx", or what). So the function should be renamed
|
|
// and/or the documentation expanded in order to clarify.
|
|
static Value genIndex(CodegenEnv &env, OpOperand *t) {
|
|
const auto map = env.op().getMatchingIndexingMap(t);
|
|
const auto stt = getSparseTensorType(t->get());
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
// FIXME: above we asserted that there are `lvlRank` many results,
|
|
// but this is assuming there are in fact `dimRank` many results instead.
|
|
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), lvlRank - 1));
|
|
assert(a.getKind() == AffineExprKind::DimId);
|
|
const LoopId idx = env.makeLoopId(a.cast<AffineDimExpr>().getPosition());
|
|
return env.getLoopVar(idx);
|
|
}
|
|
|
|
/// Generates subscript for load/store on a dense or sparse tensor.
|
|
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
|
|
SmallVectorImpl<Value> &args) {
|
|
const Location loc = env.op().getLoc();
|
|
const TensorId tid = env.makeTensorId(t->getOperandNumber());
|
|
const auto map = env.op().getMatchingIndexingMap(t);
|
|
const auto stt = getSparseTensorType(t->get());
|
|
if (stt.hasEncoding()) {
|
|
// For sparse tensors we only push the last-level's position onto `args`.
|
|
const auto pos = env.emitter().getPosits()[tid].back();
|
|
assert(pos);
|
|
args.push_back(pos);
|
|
} else {
|
|
// For dense tensors we push all level's coordinates onto `args`.
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
const auto lvlExpr = map.getResult(l);
|
|
const auto lvlCrd = env.emitter().genAffine(builder, loc, lvlExpr);
|
|
args.push_back(lvlCrd);
|
|
}
|
|
}
|
|
return env.emitter().getValBuffer()[tid];
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor load.
|
|
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
|
|
OpOperand *t) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Direct lexicographic coordinate order, tensor loads as zero.
|
|
if (!env.isExpand()) {
|
|
Type tp = getElementTypeOrSelf(t->get().getType());
|
|
return constantZero(builder, loc, tp);
|
|
}
|
|
// Load from expanded access pattern.
|
|
Value index = genIndex(env, t);
|
|
return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor load for reduction.
|
|
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
|
|
OpOperand *t) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
Value identity = env.getCustomRedId();
|
|
// Direct lexicographic coordinate order, tensor loads as identity.
|
|
if (!env.isExpand())
|
|
return identity;
|
|
// Load from expanded access pattern if filled, identity otherwise.
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value index = genIndex(env, t);
|
|
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
|
|
Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
|
|
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
|
|
}
|
|
|
|
/// Generates insertion code to implement dynamic tensor store.
|
|
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
|
|
Value rhs) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Direct insertion in lexicographic coordinate order.
|
|
if (!env.isExpand()) {
|
|
const LoopOrd numLoops = op.getRank(t);
|
|
// TODO: rewrite this to use `env.emitter().getLoopIVs(ivs)`
|
|
// instead. We just need to either assert that `numLoops ==
|
|
// env.emitter().getCurrentDepth()`, or else update the `getLoopIVs`
|
|
// method to take an optional parameter to restrict to a smaller depth.
|
|
SmallVector<Value> ivs;
|
|
ivs.reserve(numLoops);
|
|
for (LoopOrd n = 0; n < numLoops; n++) {
|
|
const auto iv = env.emitter().getLoopIV(n);
|
|
assert(iv);
|
|
ivs.push_back(iv);
|
|
}
|
|
Value chain = env.getInsertionChain();
|
|
if (!env.getValidLexInsert()) {
|
|
env.updateInsertionChain(builder.create<InsertOp>(loc, rhs, chain, ivs));
|
|
} else {
|
|
// Generates runtime check for a valid lex during reduction,
|
|
// to avoid inserting the identity value for empty reductions.
|
|
// if (validLexInsert) then
|
|
// insert(rhs) into chain
|
|
// return updated chain
|
|
// else
|
|
// return unmodified chain
|
|
scf::IfOp ifValidLexInsert = builder.create<scf::IfOp>(
|
|
loc, chain.getType(), env.getValidLexInsert(),
|
|
/*else=*/true);
|
|
// True branch.
|
|
builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
|
|
Value res = builder.create<InsertOp>(loc, rhs, chain, ivs);
|
|
builder.create<scf::YieldOp>(loc, res);
|
|
// False branch.
|
|
builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
|
|
builder.create<scf::YieldOp>(loc, chain);
|
|
// Value assignment.
|
|
builder.setInsertionPointAfter(ifValidLexInsert);
|
|
env.updateInsertionChain(ifValidLexInsert.getResult(0));
|
|
}
|
|
return;
|
|
}
|
|
// Generates insertion code along expanded access pattern.
|
|
// if (!expFilled[i]) then
|
|
// expFilled[i] = true
|
|
// expAdded[inserts++] = i
|
|
// endif
|
|
// values[i] = rhs
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value added = env.getExpandAdded();
|
|
Value count = env.getExpandCount();
|
|
Value index = genIndex(env, t);
|
|
Value fval = constantI1(builder, loc, false);
|
|
Value tval = constantI1(builder, loc, true);
|
|
// If statement.
|
|
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
|
|
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
isFilled, fval);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
|
|
/*else=*/true);
|
|
// True branch.
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
builder.create<memref::StoreOp>(loc, tval, filled, index);
|
|
builder.create<memref::StoreOp>(loc, index, added, count);
|
|
Value one = constantIndex(builder, loc, 1);
|
|
Value add = builder.create<arith::AddIOp>(loc, count, one);
|
|
builder.create<scf::YieldOp>(loc, add);
|
|
// False branch.
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, count);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
// Value assignment.
|
|
env.updateExpandCount(ifOp.getResult(0));
|
|
builder.create<memref::StoreOp>(loc, rhs, values, index);
|
|
}
|
|
|
|
/// Generates a load on a dense or sparse tensor.
|
|
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
|
|
// Test if the load was hoisted to a higher loop nest.
|
|
Value val = env.exp(exp).val;
|
|
if (val)
|
|
return val;
|
|
|
|
// Load during insertion.
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
|
|
if (env.isSparseOutput(t)) {
|
|
if (env.isCustomReduc())
|
|
return genInsertionLoadReduce(env, builder, t);
|
|
return genInsertionLoad(env, builder, t);
|
|
}
|
|
// Actual load.
|
|
SmallVector<Value> args;
|
|
Value ptr = genSubscript(env, builder, t, args);
|
|
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
|
|
}
|
|
|
|
/// Generates a store on a dense or sparse tensor.
|
|
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, ExprId exp,
|
|
Value rhs) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
// Test if this is a scalarized reduction.
|
|
if (env.isReduc()) {
|
|
env.updateReduc(rhs);
|
|
return;
|
|
}
|
|
// Store during insertion.
|
|
OpOperand *t = op.getDpsInitOperand(0);
|
|
if (env.isSparseOutput(t)) {
|
|
if (!rhs) {
|
|
// Only unary and binary are allowed to return uninitialized rhs
|
|
// to indicate missing output.
|
|
assert(env.exp(exp).kind == TensorExp::Kind::kUnary ||
|
|
env.exp(exp).kind == TensorExp::Kind::kBinary);
|
|
} else if (env.exp(exp).kind == TensorExp::Kind::kSelect) {
|
|
// Select operation insertion.
|
|
Value chain = env.getInsertionChain();
|
|
scf::IfOp ifOp =
|
|
builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
// Existing value was preserved to be used here.
|
|
assert(env.exp(exp).val);
|
|
Value v0 = env.exp(exp).val;
|
|
genInsertionStore(env, builder, t, v0);
|
|
env.merger().clearExprValue(exp);
|
|
// Yield modified insertion chain along true branch.
|
|
Value mchain = env.getInsertionChain();
|
|
builder.create<scf::YieldOp>(op.getLoc(), mchain);
|
|
// Yield original insertion chain along false branch.
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, chain);
|
|
// Done with if statement.
|
|
env.updateInsertionChain(ifOp->getResult(0));
|
|
builder.setInsertionPointAfter(ifOp);
|
|
} else {
|
|
genInsertionStore(env, builder, t, rhs);
|
|
}
|
|
return;
|
|
}
|
|
// Actual store.
|
|
SmallVector<Value> args;
|
|
Value ptr = genSubscript(env, builder, t, args);
|
|
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
|
|
}
|
|
|
|
/// Generates an invariant value.
|
|
inline static Value genInvariantValue(CodegenEnv &env, ExprId exp) {
|
|
return env.exp(exp).val;
|
|
}
|
|
|
|
/// Semi-ring branches are simply inlined by the sparse compiler. Prior
|
|
/// analysis has verified that all computations are "local" to the inlined
|
|
/// branch or otherwise invariantly defined outside the loop nest, with the
|
|
/// exception of index computations, which need to be relinked to actual
|
|
/// inlined cloned code.
|
|
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
|
|
Value e, LoopId ldx) {
|
|
if (Operation *def = e.getDefiningOp()) {
|
|
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
|
|
return env.getLoopVar(env.makeLoopId(indexOp.getDim()));
|
|
if (def->getBlock() == block) {
|
|
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) {
|
|
rewriter.updateRootInPlace(def, [&]() {
|
|
def->setOperand(
|
|
i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
|
|
});
|
|
}
|
|
}
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/// Recursively generates tensor expression.
|
|
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, ExprId e,
|
|
LoopId ldx) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
|
|
if (e == ::mlir::sparse_tensor::detail::kInvalidId)
|
|
return Value();
|
|
const TensorExp &exp = env.exp(e);
|
|
const auto kind = exp.kind;
|
|
if (kind == TensorExp::Kind::kTensor)
|
|
return genTensorLoad(env, rewriter, e);
|
|
if (kind == TensorExp::Kind::kInvariant)
|
|
return genInvariantValue(env, e);
|
|
if (kind == TensorExp::Kind::kLoopVar)
|
|
return env.getLoopVar(exp.loop);
|
|
|
|
if (kind == TensorExp::Kind::kReduce)
|
|
env.startCustomReduc(e); // enter custom
|
|
|
|
Value v0 = genExp(env, rewriter, exp.children.e0, ldx);
|
|
Value v1 = genExp(env, rewriter, exp.children.e1, ldx);
|
|
Value ee = env.merger().buildExp(rewriter, loc, e, v0, v1);
|
|
if (ee &&
|
|
(kind == TensorExp::Kind::kUnary || kind == TensorExp::Kind::kBinary ||
|
|
kind == TensorExp::Kind::kBinaryBranch ||
|
|
kind == TensorExp::Kind::kReduce || kind == TensorExp::Kind::kSelect))
|
|
ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);
|
|
|
|
if (kind == TensorExp::Kind::kReduce)
|
|
env.endCustomReduc(); // exit custom
|
|
|
|
if (kind == TensorExp::Kind::kSelect)
|
|
env.merger().setExprValue(e, v0); // Preserve value for later use.
|
|
|
|
return ee;
|
|
}
|
|
|
|
/// Hoists loop invariant tensor loads for which indices have been exhausted.
|
|
static void genInvariants(CodegenEnv &env, OpBuilder &builder, ExprId exp,
|
|
LoopId ldx, bool atStart) {
|
|
if (exp == ::mlir::sparse_tensor::detail::kInvalidId)
|
|
return;
|
|
if (env.exp(exp).kind == TensorExp::Kind::kTensor) {
|
|
// Inspect tensor indices.
|
|
bool isAtLoop = ldx == ::mlir::sparse_tensor::detail::kInvalidId;
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
|
|
const auto map = op.getMatchingIndexingMap(&t);
|
|
const auto stt = getSparseTensorType(t.get());
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(static_cast<Level>(map.getNumResults()) == lvlRank);
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
// FIXME: above we asserted that there are `lvlRank` many results,
|
|
// but this is assuming there are in fact `dimRank` many results instead.
|
|
const AffineExpr a = map.getResult(toOrigDim(stt.getEncoding(), l));
|
|
const auto sldx =
|
|
env.merger().getLoopId(env.makeTensorId(t.getOperandNumber()), l);
|
|
if (sldx && env.merger().isFilterLoop(*sldx)) {
|
|
if (!env.getLoopVar(*sldx))
|
|
// The filter loops has not been constructed.
|
|
return;
|
|
if (*sldx == ldx)
|
|
isAtLoop = true;
|
|
} else if (!isInvariantAffine(env, a, ldx, isAtLoop))
|
|
return; // still in play
|
|
}
|
|
// All exhausted at this level (isAtLoop denotes exactly at this LoopId).
|
|
if (!isAtLoop)
|
|
return;
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
if (lhs == &t) {
|
|
// Start or end a scalarized reduction.
|
|
if (atStart) {
|
|
Value load = env.isCustomReduc() ? env.getCustomRedId()
|
|
: genTensorLoad(env, builder, exp);
|
|
env.startReduc(exp, load);
|
|
if (env.hasSparseOutput())
|
|
env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
|
|
} else {
|
|
genTensorStore(env, builder, exp, env.endReduc());
|
|
env.clearValidLexInsert();
|
|
}
|
|
} else {
|
|
// Start or end loop invariant hoisting of a tensor load.
|
|
if (atStart)
|
|
env.merger().setExprValue(exp, genTensorLoad(env, builder, exp));
|
|
else
|
|
env.merger().clearExprValue(exp);
|
|
}
|
|
} else if (env.exp(exp).kind != TensorExp::Kind::kInvariant &&
|
|
env.exp(exp).kind != TensorExp::Kind::kLoopVar) {
|
|
// Traverse into the binary operations. Note that we only hoist
|
|
// tensor loads, since subsequent MLIR/LLVM passes know how to
|
|
// deal with all other kinds of derived loop invariants.
|
|
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
|
|
env.startCustomReduc(exp); // enter custom
|
|
const ExprId e0 = env.exp(exp).children.e0;
|
|
const ExprId e1 = env.exp(exp).children.e1;
|
|
genInvariants(env, builder, e0, ldx, atStart);
|
|
genInvariants(env, builder, e1, ldx, atStart);
|
|
if (env.exp(exp).kind == TensorExp::Kind::kReduce)
|
|
env.endCustomReduc(); // exit custom
|
|
}
|
|
}
|
|
|
|
/// Generates an expanded access pattern in innermost dimension.
|
|
static void genExpand(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
|
|
bool atStart) {
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
|
|
return; // not needed at this level
|
|
assert(!env.isReduc());
|
|
// Generate start or end of an expanded access pattern. Note that because
|
|
// an expension does not rely on the ongoing contents of the sparse storage
|
|
// scheme, we can use the original tensor as incoming SSA value (which
|
|
// simplifies codegen a bit). If expansion on the actual contents is ever
|
|
// needed, we will need to use the SSA value in the insertion chain instead.
|
|
Value tensor = lhs->get();
|
|
Location loc = op.getLoc();
|
|
if (atStart) {
|
|
auto dynShape = {ShapedType::kDynamic};
|
|
Type etp = tensor.getType().cast<ShapedType>().getElementType();
|
|
Type t1 = MemRefType::get(dynShape, etp);
|
|
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
|
|
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
|
|
Type t4 = builder.getIndexType();
|
|
auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
|
|
assert(r.getNumResults() == 4);
|
|
env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
|
|
r.getResult(3));
|
|
} else {
|
|
SmallVector<Value> indices;
|
|
for (LoopOrd i = 0; i < at; i++)
|
|
indices.push_back(env.emitter().getLoopIV(i));
|
|
Value values = env.getExpandValues();
|
|
Value filled = env.getExpandFilled();
|
|
Value added = env.getExpandAdded();
|
|
Value count = env.getExpandCount();
|
|
Value chain = env.getInsertionChain();
|
|
Value compress = builder.create<CompressOp>(loc, values, filled, added,
|
|
count, chain, indices);
|
|
env.updateInsertionChain(compress);
|
|
env.endExpand();
|
|
}
|
|
}
|
|
|
|
/// Returns parallelization strategy. Any implicit loop in the Linalg
|
|
/// operation that is marked "parallel" is a candidate. Whether it is actually
|
|
/// converted to a parallel operation depends on the requested strategy.
|
|
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
|
|
// Reject parallelization of sparse output.
|
|
if (env.hasSparseOutput())
|
|
return false;
|
|
// Parallel loops on tensor expansion can cause data races.
|
|
if (env.isExpand())
|
|
return false;
|
|
// Inspect strategy.
|
|
switch (env.options().parallelizationStrategy) {
|
|
case SparseParallelizationStrategy::kNone:
|
|
return false;
|
|
case SparseParallelizationStrategy::kDenseOuterLoop:
|
|
return isOuter && !isSparse;
|
|
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
|
|
return isOuter;
|
|
case SparseParallelizationStrategy::kDenseAnyLoop:
|
|
return !isSparse;
|
|
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected parallelization strategy");
|
|
}
|
|
|
|
/// Generates a for-loop on a single index.
|
|
static Operation *genFor(CodegenEnv &env, OpBuilder &builder, bool isOuter,
|
|
bool isInner, LoopId ldx, ArrayRef<TensorId> tids,
|
|
ArrayRef<Level> lvls) {
|
|
linalg::GenericOp op = env.op();
|
|
Location loc = op.getLoc();
|
|
auto iteratorTypes = op.getIteratorTypesArray();
|
|
bool isSparse = llvm::any_of(tids, [ldx, &env](TensorId tid) {
|
|
const auto dlt = env.dlt(tid, ldx);
|
|
return isCompressedDLT(dlt) || isSingletonDLT(dlt);
|
|
});
|
|
|
|
bool isParallel = isParallelFor(env, isOuter, isSparse);
|
|
|
|
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
if (env.merger().isFilterLoop(ldx)) {
|
|
const TensorId tid = tids.front();
|
|
const Level lvl = lvls.front();
|
|
// tids/lvls must only have one value because filter loops only
|
|
// corresponding to the one and only sparse tensor level.
|
|
assert(isSparse && tids.size() == 1 && lvls.size() == 1);
|
|
OpOperand *t = &op->getOpOperand(tid);
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
// Retrieves the affine expression for the filter loop.
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
AffineExpr a =
|
|
op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, lvl));
|
|
return env.emitter().enterFilterLoopOverTensorAtLvl(builder, loc, tid,
|
|
lvl, a, reduc);
|
|
}
|
|
return env.emitter().enterLoopOverTensorAtLvl(builder, loc, tids, lvls,
|
|
reduc, isParallel);
|
|
});
|
|
assert(loop);
|
|
return loop;
|
|
}
|
|
|
|
/// Emit a while-loop for co-iteration over multiple indices.
|
|
static Operation *genWhile(CodegenEnv &env, OpBuilder &builder, LoopId idx,
|
|
bool needsUniv, ArrayRef<TensorId> tids,
|
|
ArrayRef<Level> lvls) {
|
|
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
// Construct the while-loop with a parameter for each
|
|
// index.
|
|
return env.emitter().enterCoIterationOverTensorsAtLvls(
|
|
builder, env.op().getLoc(), tids, lvls, needsUniv, reduc);
|
|
});
|
|
assert(loop);
|
|
return loop;
|
|
}
|
|
|
|
/// Generates a for-loop or a while-loop, depending on whether it implements
|
|
/// singleton iteration or co-iteration over the given conjunction.
|
|
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, LoopOrd at,
|
|
bool needsUniv, ArrayRef<TensorId> tids,
|
|
ArrayRef<Level> lvls, bool isFor) {
|
|
assert(tids.size() == lvls.size());
|
|
const LoopId idx = env.topSortAt(at);
|
|
if (isFor) {
|
|
bool isOuter = at == 0;
|
|
bool isInner = at == env.topSortSize() - 1;
|
|
return genFor(env, builder, isOuter, isInner, idx, tids, lvls);
|
|
}
|
|
return genWhile(env, builder, idx, needsUniv, tids, lvls);
|
|
}
|
|
|
|
/// Generates the induction structure for a while-loop.
|
|
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, LoopId idx,
|
|
bool needsUniv, scf::WhileOp whileOp) {
|
|
Location loc = env.op().getLoc();
|
|
// Finalize each else branch of all if statements.
|
|
if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
|
|
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
|
|
builder.getInsertionBlock()->getParentOp())) {
|
|
// Break on IfOp for slicing filtering.
|
|
if (ifOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ==
|
|
StringAttr::get(ifOp->getContext(), "slice"))
|
|
break;
|
|
|
|
unsigned y = 0;
|
|
SmallVector<Value> yields;
|
|
if (env.isReduc()) {
|
|
yields.push_back(env.getReduc());
|
|
env.updateReduc(ifOp.getResult(y++));
|
|
if (env.getValidLexInsert()) {
|
|
yields.push_back(env.getValidLexInsert());
|
|
env.setValidLexInsert(ifOp.getResult(y++));
|
|
}
|
|
}
|
|
if (env.isExpand()) {
|
|
yields.push_back(env.getExpandCount());
|
|
env.updateExpandCount(ifOp->getResult(y++));
|
|
}
|
|
if (env.getInsertionChain()) {
|
|
yields.push_back(env.getInsertionChain());
|
|
env.updateInsertionChain(ifOp->getResult(y++));
|
|
}
|
|
assert(y == yields.size());
|
|
builder.create<scf::YieldOp>(loc, yields);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
}
|
|
}
|
|
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
|
|
}
|
|
|
|
/// Generates a single if-statement within a while-loop.
|
|
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, LoopId ldx,
|
|
LatPointId p) {
|
|
Location loc = env.op().getLoc();
|
|
SmallVector<Type> types;
|
|
Value cond;
|
|
env.merger().foreachTensorLoopId(
|
|
p, /*simple=*/true,
|
|
[&](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
|
|
DimLevelType dlt, bool /*unused*/) {
|
|
assert(ldx == env.merger().loop(b));
|
|
Value clause;
|
|
if (isCompressedDLT(dlt) || isSingletonDLT(dlt)) {
|
|
assert(lvl.has_value());
|
|
const Value crd = env.emitter().getCoords()[tid][*lvl];
|
|
const Value lvar = env.getLoopVar(ldx);
|
|
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
crd, lvar);
|
|
} else {
|
|
assert(isDenseDLT(dlt) || isUndefDLT(dlt));
|
|
clause = constantI1(builder, loc, true);
|
|
}
|
|
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
|
|
});
|
|
if (env.isReduc()) {
|
|
types.push_back(env.getReduc().getType());
|
|
if (env.getValidLexInsert())
|
|
types.push_back(env.getValidLexInsert().getType());
|
|
}
|
|
if (env.isExpand())
|
|
types.push_back(builder.getIndexType());
|
|
if (env.getInsertionChain())
|
|
types.push_back(env.getInsertionChain().getType());
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
return ifOp;
|
|
}
|
|
|
|
/// Generates end of true branch of if-statement within a while-loop.
|
|
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
|
|
Operation *loop, Value redInput, Value cntInput,
|
|
Value insInput) {
|
|
SmallVector<Value> operands;
|
|
if (env.isReduc()) {
|
|
operands.push_back(env.getReduc());
|
|
env.updateReduc(redInput);
|
|
if (env.getValidLexInsert())
|
|
// Any overlapping indices during a reduction creates a valid lex insert.
|
|
operands.push_back(constantI1(builder, env.op().getLoc(), true));
|
|
}
|
|
if (env.isExpand()) {
|
|
operands.push_back(env.getExpandCount());
|
|
env.updateExpandCount(cntInput);
|
|
}
|
|
if (env.getInsertionChain()) {
|
|
operands.push_back(env.getInsertionChain());
|
|
env.updateInsertionChain(insInput);
|
|
}
|
|
if (!operands.empty())
|
|
builder.create<scf::YieldOp>(env.op().getLoc(), operands);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler synthesis methods (loop sequence).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Starts a loop sequence at given level. Returns true if
|
|
/// the universal loop index must be maintained at this level.
|
|
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, ExprId exp,
|
|
LoopOrd at, LoopId idx, LoopId ldx, LatSetId lts) {
|
|
assert(!env.getLoopVar(idx));
|
|
// Emit invariants at this loop sequence level.
|
|
genInvariants(env, builder, exp, ldx, /*atStart=*/true);
|
|
// Emit access pattern expansion for sparse tensor output.
|
|
genExpand(env, builder, at, /*atStart=*/true);
|
|
// Emit further intitialization at this loop sequence level.
|
|
const LatPointId l0 = env.set(lts)[0];
|
|
bool needsUniv = false;
|
|
|
|
SmallVector<TensorId> tids;
|
|
SmallVector<Level> lvls;
|
|
env.merger().foreachTensorLoopId(l0, [&](TensorLoopId b, TensorId tid,
|
|
std::optional<Level> lvl,
|
|
DimLevelType dlt, bool isIdxReduc) {
|
|
assert(env.merger().loop(b) == idx);
|
|
// FIXME: Dense index reduction can reuse the universal index as well.
|
|
if (!isIdxReduc && (isDenseDLT(dlt) || isUndefDLT(dlt))) {
|
|
needsUniv = true;
|
|
} else {
|
|
// sparse/singleton levels.
|
|
tids.push_back(tid);
|
|
lvls.push_back(*lvl);
|
|
}
|
|
});
|
|
|
|
env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tids, lvls);
|
|
|
|
// Maintain the universal index only if it is actually
|
|
// consumed by a subsequent lattice point.
|
|
if (needsUniv) {
|
|
for (const LatPointId li : env.set(lts).drop_front())
|
|
if (!env.merger().hasAnySparse(env.lat(li).simple) &&
|
|
!env.merger().hasSparseIdxReduction(env.lat(li).simple))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void genConstantDenseAddressFromLevel(CodegenEnv &env,
|
|
OpBuilder &builder, TensorId tid,
|
|
Level startLvl) {
|
|
// TODO: Handle affine expression on output tensor.
|
|
linalg::GenericOp op = env.op();
|
|
assert(tid < op.getNumDpsInputs());
|
|
OpOperand *input = op.getDpsInputOperands()[tid];
|
|
const auto lvlExprs = op.getMatchingIndexingMap(input).getResults();
|
|
const auto enc = getSparseTensorEncoding(input->get().getType());
|
|
if (enc) {
|
|
const Location loc = op.getLoc();
|
|
const TensorId tid = env.makeTensorId(input->getOperandNumber());
|
|
const Level lvlRank = enc.getLvlRank();
|
|
assert(lvlExprs.size() == static_cast<size_t>(lvlRank));
|
|
// FIXME: there is dim/lvl confusion here
|
|
for (Level l = startLvl; l < lvlRank; l++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
AffineExpr lvlExpr = lvlExprs[toOrigDim(enc, l)];
|
|
if (enc.isDenseLvl(l) && lvlExpr.isa<AffineConstantExpr>())
|
|
env.emitter().genDenseAffineAddress(builder, loc, tid, l, lvlExpr);
|
|
else
|
|
return; // break on first non-dense non-constant level
|
|
}
|
|
}
|
|
}
|
|
|
|
static void genInitConstantDenseAddress(CodegenEnv &env,
|
|
RewriterBase &rewriter) {
|
|
// We can generate address for constant affine expression before any loops
|
|
// starting from the first level as they do not depend on any thing.
|
|
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
|
|
// levels can be determined before loops.
|
|
for (TensorId tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
|
|
genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
|
|
}
|
|
|
|
/// Return true if the lattices bit can be iterated by a for loop.
|
|
static bool translateBitsToTidLvlPairs(
|
|
CodegenEnv &env, LatPointId li, LoopId ldx, SmallVectorImpl<TensorId> &tids,
|
|
SmallVectorImpl<Level> &lvls, SmallVectorImpl<TensorId> &affineTids,
|
|
SmallVectorImpl<Level> &affineLvls, SmallVectorImpl<AffineExpr> &exps) {
|
|
const BitVector &simple = env.lat(li).simple;
|
|
const TensorId outTid = env.merger().getOutTensorID();
|
|
const std::optional<Level> outLvl = env.merger().getLvl(outTid, ldx);
|
|
|
|
unsigned numloopCond = 0;
|
|
bool hasNonUnique = false;
|
|
|
|
env.merger().foreachTensorLoopId(
|
|
li, [&, ldx](TensorLoopId b, TensorId tid, std::optional<Level> lvl,
|
|
DimLevelType dlt, bool isIdxReduc) {
|
|
if (simple[b]) {
|
|
if (isIdxReduc) {
|
|
tids.push_back(tid);
|
|
lvls.push_back(*lvl);
|
|
numloopCond++;
|
|
return;
|
|
}
|
|
if (isUndefDLT(dlt)) {
|
|
// An undefined dlt in the lattices, we probably mean to
|
|
// iterate based on the level of output tensor. E.g., this
|
|
// could be a synthetic tensor (for invariants and sparse
|
|
// output tensor).
|
|
// out[i][j] = invariant; or a broadcast
|
|
// out[i][j] = in[i] (j is undef for input)
|
|
tid = outTid;
|
|
lvl = outLvl;
|
|
// Skips invalid lvl (e.g., when this is a zero ranked tensor).
|
|
if (!lvl)
|
|
return;
|
|
}
|
|
hasNonUnique = !isUniqueDLT(dlt) || hasNonUnique;
|
|
tids.push_back(tid);
|
|
lvls.push_back(*lvl);
|
|
numloopCond++;
|
|
} else if (isDenseDLT(dlt)) {
|
|
tids.push_back(tid);
|
|
lvls.push_back(*lvl);
|
|
} else {
|
|
assert(isUndefDLT(dlt));
|
|
linalg::GenericOp op = env.op();
|
|
if (tid >= op.getNumDpsInputs())
|
|
// We only handle affine expression on input tensors (for now).
|
|
return;
|
|
OpOperand *operand = &op->getOpOperand(tid);
|
|
const auto stt = getSparseTensorType(operand->get());
|
|
// Non-annotated dense tensors requires no special handling.
|
|
if (!stt.hasEncoding())
|
|
return;
|
|
|
|
ArrayRef<AffineExpr> affines =
|
|
op.getMatchingIndexingMap(operand).getResults();
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(affines.size() == static_cast<size_t>(lvlRank));
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
AffineExpr exp = affines[toOrigDim(stt.getEncoding(), l)];
|
|
// Skip simple affine expression and non-dense levels (which
|
|
// have their own filter loop).
|
|
if (exp.isa<AffineDimExpr>() || !stt.isDenseLvl(l))
|
|
continue;
|
|
|
|
// Constant affine expression are handled in genLoop
|
|
if (!exp.isa<AffineConstantExpr>()) {
|
|
bool isAtLoop = false;
|
|
if (isInvariantAffine(env, exp, ldx, isAtLoop) && isAtLoop) {
|
|
// If the compound affine is invariant and we are right at the
|
|
// level. We need to generate the address according to the
|
|
// affine expression. This is also the best place we can do it
|
|
// to avoid putting it inside inner loops.
|
|
// NOTE: It assumes that the levels of the input tensor are
|
|
// initialized in order (and it is also currently guaranteed by
|
|
// computeIterationGraph), another more admissible approach
|
|
// might be accepting out-of-order access between consecutive
|
|
// dense levels.
|
|
affineTids.push_back(tid);
|
|
affineLvls.push_back(l);
|
|
exps.push_back(exp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
if (isDenseDLT(env.dlt(outTid, ldx))) {
|
|
// Note that we generate dense indices of the output tensor
|
|
// unconditionally, since they may not appear in the lattice, but may be
|
|
// needed for linearized env.
|
|
tids.push_back(outTid);
|
|
lvls.push_back(*outLvl);
|
|
}
|
|
|
|
assert(numloopCond > 0);
|
|
// If we just need to one loop conditions and the conditions is not imposed on
|
|
// non-unique level, the loop can be generated by a for loop.
|
|
return numloopCond == 1 && !hasNonUnique;
|
|
}
|
|
|
|
/// Starts a single loop in current sequence.
|
|
static std::pair<Operation *, bool> startLoop(CodegenEnv &env,
|
|
OpBuilder &builder, LoopOrd at,
|
|
LatPointId li, bool needsUniv) {
|
|
// The set of tensors + lvls to generate loops on
|
|
SmallVector<TensorId> tids, affineTids;
|
|
SmallVector<Level> lvls, affineLvls;
|
|
// The set of dense tensors with non-trivial affine expression that just
|
|
// becomes invariant and the address shall now be generated at the current
|
|
// level.
|
|
SmallVector<AffineExpr> affines;
|
|
bool isSingleCond = translateBitsToTidLvlPairs(
|
|
env, li, env.topSortAt(at), tids, lvls, affineTids, affineLvls, affines);
|
|
|
|
// Emit the for/while-loop control.
|
|
Operation *loop =
|
|
genLoop(env, builder, at, needsUniv, tids, lvls, isSingleCond);
|
|
Location loc = env.op().getLoc();
|
|
for (auto [tid, lvl, exp] : llvm::zip(affineTids, affineLvls, affines)) {
|
|
env.emitter().genDenseAffineAddress(builder, loc, tid, lvl, exp);
|
|
}
|
|
|
|
// Until now, we have entered every <tid, lvl> pair in {cond, extra,
|
|
// affine}Tids/Lvls. The addresses of the upcoming levels which are dependent
|
|
// on constant affines expression may now be determined.
|
|
auto allTids = llvm::concat<TensorId>(tids, affineTids);
|
|
auto allLvls = llvm::concat<Level>(lvls, affineLvls);
|
|
for (auto [tid, lvl] : llvm::zip(allTids, allLvls)) {
|
|
if (tid != env.merger().getOutTensorID())
|
|
genConstantDenseAddressFromLevel(env, builder, tid, lvl + 1);
|
|
}
|
|
|
|
return std::make_pair(loop, isSingleCond);
|
|
}
|
|
|
|
/// Ends a single loop in current sequence. Returns new values for needsUniv.
|
|
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
|
|
LoopId idx, LatPointId li, bool needsUniv) {
|
|
// End a while-loop.
|
|
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
|
|
finalizeWhileOp(env, rewriter, idx, needsUniv, whileOp);
|
|
} else if (auto forOp = dyn_cast<scf::ForOp>(loop)) {
|
|
// Any iteration of a reduction for-loop creates a valid lex insert.
|
|
if (env.isReduc() && env.getValidLexInsert())
|
|
env.setValidLexInsert(constantI1(rewriter, env.op().getLoc(), true));
|
|
} else {
|
|
needsUniv = false;
|
|
}
|
|
|
|
env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
|
|
env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
|
|
return std::nullopt;
|
|
});
|
|
|
|
return needsUniv;
|
|
}
|
|
|
|
/// Ends a loop sequence at given level.
|
|
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, ExprId exp,
|
|
LoopOrd at, LoopId idx, LoopId ldx) {
|
|
assert(!env.getLoopVar(idx));
|
|
env.emitter().exitCurrentLoopSeq();
|
|
// Unmark bookkeeping of invariants and loop index.
|
|
genInvariants(env, builder, exp, ldx, /*atStart=*/false);
|
|
// Finalize access pattern expansion for sparse tensor output.
|
|
genExpand(env, builder, at, /*atStart=*/false);
|
|
}
|
|
|
|
/// Recursively generates code while computing iteration lattices in order
|
|
/// to manage the complexity of implementing co-iteration over unions
|
|
/// and intersections of sparse iterations spaces.
|
|
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, ExprId exp,
|
|
LoopOrd at) {
|
|
// At each leaf, assign remaining tensor (sub)expression to output tensor.
|
|
if (at == env.topSortSize()) {
|
|
const LoopId ldx = env.topSortAt(at - 1);
|
|
Value rhs = genExp(env, rewriter, exp, ldx);
|
|
genTensorStore(env, rewriter, exp, rhs);
|
|
return;
|
|
}
|
|
|
|
// Construct iteration lattices for current loop index, with L0 at top.
|
|
const LoopId idx = env.topSortAt(at);
|
|
const LoopId ldx = at == 0 ? ::mlir::sparse_tensor::detail::kInvalidId
|
|
: env.topSortAt(at - 1);
|
|
const LatSetId lts =
|
|
env.merger().optimizeSet(env.merger().buildLattices(exp, idx));
|
|
|
|
// Start a loop sequence.
|
|
bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);
|
|
|
|
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
|
|
//
|
|
// NOTE: We cannot change this to `for (const LatPointId li : env.set(lts))`
|
|
// because the loop body causes data-movement which invalidates
|
|
// the iterator.
|
|
const unsigned lsize = env.set(lts).size();
|
|
for (unsigned i = 0; i < lsize; i++) {
|
|
const LatPointId li = env.set(lts)[i];
|
|
// Start a loop.
|
|
auto [loop, isSingleCond] = startLoop(env, rewriter, at, li, needsUniv);
|
|
|
|
// Visit all lattices points with Li >= Lj to generate the
|
|
// loop-body, possibly with if statements for coiteration.
|
|
Value redInput = env.getReduc();
|
|
Value cntInput = env.getExpandCount();
|
|
Value insInput = env.getInsertionChain();
|
|
// NOTE: We cannot change this to `for (const LatPointId lj : env.set(lts))`
|
|
// because the loop body causes data-movement which invalidates the
|
|
// iterator.
|
|
for (unsigned j = 0; j < lsize; j++) {
|
|
const LatPointId lj = env.set(lts)[j];
|
|
const ExprId ej = env.lat(lj).exp;
|
|
if (li == lj || env.merger().latGT(li, lj)) {
|
|
// Recurse into body of each branch.
|
|
if (!isSingleCond) {
|
|
scf::IfOp ifOp = genIf(env, rewriter, idx, lj);
|
|
genStmt(env, rewriter, ej, at + 1);
|
|
endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput);
|
|
} else {
|
|
genStmt(env, rewriter, ej, at + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// End a loop.
|
|
needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv);
|
|
}
|
|
|
|
// End a loop sequence.
|
|
endLoopSeq(env, rewriter, exp, at, idx, ldx);
|
|
}
|
|
|
|
/// Converts the result computed by the sparse kernel into the required form.
|
|
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
|
|
linalg::GenericOp op = env.op();
|
|
OpOperand *lhs = op.getDpsInitOperand(0);
|
|
Value tensor = lhs->get();
|
|
Type resType = tensor.getType();
|
|
if (getSparseTensorEncoding(resType)) {
|
|
// The sparse tensor rematerializes from the original sparse tensor's
|
|
// underlying sparse storage format. For an insertion chain, the
|
|
// tensor materializes from the chain with 'hasInserts' enabled.
|
|
bool hasInserts = false;
|
|
if (Value chain = env.getInsertionChain()) {
|
|
hasInserts = true;
|
|
tensor = chain;
|
|
}
|
|
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
|
|
} else {
|
|
// To rematerialize an non-annotated tensor, simply load it
|
|
// from the bufferized value.
|
|
Value val = env.emitter().getValBuffer().back(); // value array
|
|
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sparse compiler rewriting methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Sparse rewriting rule for generic Lingalg operation.
|
|
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
|
|
public:
|
|
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
|
|
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
|
|
|
|
LogicalResult matchAndRewrite(linalg::GenericOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Only accept single output operations without affine index on sparse
|
|
// output.
|
|
if (op.getNumDpsInits() != 1 || hasNonTrivialAffineOnSparseOut(op))
|
|
return failure();
|
|
|
|
// Sets up a code generation environment.
|
|
const unsigned numTensors = op->getNumOperands();
|
|
const unsigned numLoops = op.getNumLoops();
|
|
const unsigned numFilterLoops = getNumNonTrivialIdxExpOnSparseLvls(op);
|
|
// TODO: we should probably always use slice-based codegen whenever
|
|
// possible, we can even intermix slice-based and filter-loop based codegen.
|
|
bool idxReducBased = options.enableIndexReduction && numFilterLoops != 0;
|
|
|
|
// If we have indexing map like (d0) -> (0, d0), there might be more
|
|
// levels then loops because of the constant index, that means we can not
|
|
// use numLoops as the upper bound for ranks of all tensors.
|
|
// TODO: Constant indices are currently not support on sparse tensor, but
|
|
// are allowed in non-annotated dense tensor. Support it, it would be
|
|
// required for sparse tensor slice rank reducing too.
|
|
Level maxLvlRank = 0;
|
|
for (auto operand : op.getOperands()) {
|
|
if (auto rtp = operand.getType().dyn_cast<RankedTensorType>()) {
|
|
maxLvlRank = std::max(maxLvlRank, SparseTensorType(rtp).getLvlRank());
|
|
}
|
|
}
|
|
|
|
// If we uses slice based algorithm for affine index, we do not need filter
|
|
// loop.
|
|
CodegenEnv env(op, options, numTensors, numLoops,
|
|
/*numFilterLoops=*/idxReducBased ? 0 : numFilterLoops,
|
|
maxLvlRank);
|
|
|
|
// Detects sparse annotations and translates the per-level sparsity
|
|
// information for all tensors to loop indices in the kernel.
|
|
if (!findSparseAnnotations(env, idxReducBased))
|
|
return failure();
|
|
|
|
// Constructs the tensor expressions tree from `op`, returns failure if the
|
|
// tree can not be built or the tensor expression is inadmissible.
|
|
if (failed(env.initTensorExp()))
|
|
return failure();
|
|
|
|
// Computes a topologically sorted iteration graph to ensure tensors
|
|
// are visited in natural index order. Gradually relaxes the considered
|
|
// constraints until an acyclic iteration graph results, such that sparse
|
|
// code generation can proceed. As a last resort, an attempt is made
|
|
// to resolve cycles by inserting a conversion.
|
|
bool isAdmissible = false;
|
|
bool hasCycle = true;
|
|
|
|
// An const list of all masks that we used for interation graph
|
|
// computation. Must be ordered from more strict to less strict.
|
|
// Ideally (though might not be guaranteed), the eariler a constraint mask
|
|
// can be satisfied, the faster the generated kernel will be.
|
|
const auto allMasks = {
|
|
SortMask::kIncludeAll, SortMask::kIncludeDense,
|
|
SortMask::kIncludeDenseInput, SortMask::kIncludeDenseOutput,
|
|
SortMask::kIncludeUndef, SortMask::kSparseOnly};
|
|
for (const SortMask mask : allMasks) {
|
|
if (computeIterationGraph(env, mask, nullptr, idxReducBased)) {
|
|
hasCycle = false;
|
|
if (env.isAdmissibleTopoOrder()) {
|
|
isAdmissible = true;
|
|
break;
|
|
}
|
|
// else try a set of less strict constraints.
|
|
}
|
|
}
|
|
if (hasCycle) {
|
|
return idxReducBased
|
|
? failure() // TODO: should cycle be resolved differently?
|
|
: resolveCycle(env, rewriter); // one last shot
|
|
}
|
|
|
|
if (!isAdmissible)
|
|
return failure(); // inadmissible expression, reject
|
|
|
|
// Recursively generates code if admissible.
|
|
env.startEmit();
|
|
genBuffers(env, rewriter);
|
|
// TODO: Constant affine expression should be handled differently when using
|
|
// slice-based codegen, it does not matter now becasue we already reject the
|
|
// constant expression at a earlier stage.
|
|
genInitConstantDenseAddress(env, rewriter);
|
|
genStmt(env, rewriter, env.getExprId(), 0);
|
|
genResult(env, rewriter);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
// Last resort cycle resolution.
|
|
LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
|
|
// Compute topological sort while leaving out every
|
|
// sparse input tensor in succession until an acylic
|
|
// iteration graph results.
|
|
for (OpOperand *t : env.op().getDpsInputOperands()) {
|
|
const TensorId tid = env.makeTensorId(t->getOperandNumber());
|
|
Value tval = t->get();
|
|
auto srcEnc = getSparseTensorEncoding(tval.getType());
|
|
if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
|
|
continue;
|
|
// Found an input tensor that resolves the cycle by inserting a
|
|
// conversion into a sparse tensor that adheres to the iteration
|
|
// graph order. Also releases the temporary sparse tensor.
|
|
//
|
|
// TODO: investigate fusing the conversion with computation,
|
|
// especially if it is a direct yield!
|
|
//
|
|
auto srcTp = getRankedTensorType(tval);
|
|
auto dstEnc = SparseTensorEncodingAttr::get(
|
|
getContext(), srcEnc.getDimLevelType(),
|
|
permute(env, env.op().getMatchingIndexingMap(t)), // new order
|
|
srcEnc.getHigherOrdering(), srcEnc.getPosWidth(),
|
|
srcEnc.getCrdWidth());
|
|
auto dstTp = RankedTensorType::get(srcTp.getShape(),
|
|
srcTp.getElementType(), dstEnc);
|
|
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
|
|
rewriter.updateRootInPlace(env.op(),
|
|
[&]() { env.op()->setOperand(tid, convert); });
|
|
rewriter.setInsertionPointAfter(env.op());
|
|
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
|
|
return success();
|
|
}
|
|
// Cannot be resolved with a single conversion.
|
|
// TODO: convert more than one?
|
|
return failure();
|
|
}
|
|
|
|
/// Options to control sparse code generation.
|
|
SparsificationOptions options;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Populates the given patterns list with rewriting rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparsificationPatterns(
|
|
RewritePatternSet &patterns, const SparsificationOptions &options) {
|
|
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
|
|
}
|