Files
clang-p2996/llvm/test/Analysis/DivergenceAnalysis/AMDGPU/inline-asm.ll
Sameer Sahasrabuddhe 475ce4c200 RFC: Uniformity Analysis for Irreducible Control Flow
Uniformity analysis is a generalization of divergence analysis to
include irreducible control flow:

  1. The proposed spec presents a notion of "maximal convergence" that
     captures the existing convention of converging threads at the
     headers of natual loops.

  2. Maximal convergence is then extended to irreducible cycles. The
     identity of irreducible cycles is determined by the choices made
     in a depth-first traversal of the control flow graph. Uniformity
     analysis uses criteria that depend only on closed paths and not
     cycles, to determine maximal convergence. This makes it a
     conservative analysis that is independent of the effect of DFS on
     CycleInfo.

  3. The analysis is implemented as a template that can be
     instantiated for both LLVM IR and Machine IR.

Validation:
  - passes existing tests for divergence analysis
  - passes new tests with irreducible control flow
  - passes equivalent tests in MIR and GMIR

Based on concepts originally outlined by
Nicolai Haehnle <nicolai.haehnle@amd.com>

With contributions from Ruiling Song <ruiling.song@amd.com> and
Jay Foad <jay.foad@amd.com>.

Support for GMIR and lit tests for GMIR/MIR added by
Yashwant Singh <yashwant.singh@amd.com>.

Differential Revision: https://reviews.llvm.org/D130746
2022-12-20 07:22:24 +05:30

111 lines
4.6 KiB
LLVM

; RUN: opt -mtriple amdgcn-unknown-amdhsa -mcpu=tahiti -passes='print<divergence>' -disable-output %s 2>&1 | FileCheck %s
; RUN: opt -mtriple amdgcn-unknown-amdhsa -mcpu=gfx908 -passes='print<divergence>' -disable-output %s 2>&1 | FileCheck %s
; RUN: opt -mtriple amdgcn-unknown-amdhsa -mcpu=tahiti -passes='print<uniformity>' -disable-output %s 2>&1 | FileCheck %s
; RUN: opt -mtriple amdgcn-unknown-amdhsa -mcpu=gfx908 -passes='print<uniformity>' -disable-output %s 2>&1 | FileCheck %s
; Make sure nothing crashes on targets with or without AGPRs
; CHECK-LABEL: for function 'inline_asm_1_sgpr_virtreg_output':
; CHECK-NOT: DIVERGENT
define i32 @inline_asm_1_sgpr_virtreg_output() {
%sgpr = call i32 asm "s_mov_b32 $0, 0", "=s"()
ret i32 %sgpr
}
; CHECK-LABEL: for function 'inline_asm_1_sgpr_physreg_output':
; CHECK-NOT: DIVERGENT
define i32 @inline_asm_1_sgpr_physreg_output() {
%sgpr = call i32 asm "s_mov_b32 s0, 0", "={s0}"()
ret i32 %sgpr
}
; CHECK-LABEL: for function 'inline_asm_1_vgpr_virtreg_output':
; CHECK: DIVERGENT: %vgpr = call i32 asm "v_mov_b32 $0, 0", "=v"()
define i32 @inline_asm_1_vgpr_virtreg_output() {
%vgpr = call i32 asm "v_mov_b32 $0, 0", "=v"()
ret i32 %vgpr
}
; CHECK-LABEL: for function 'inline_asm_1_vgpr_physreg_output':
; CHECK: DIVERGENT: %vgpr = call i32 asm "v_mov_b32 v0, 0", "={v0}"()
define i32 @inline_asm_1_vgpr_physreg_output() {
%vgpr = call i32 asm "v_mov_b32 v0, 0", "={v0}"()
ret i32 %vgpr
}
; CHECK-LABEL: for function 'inline_asm_1_agpr_virtreg_output':
; CHECK: DIVERGENT: %vgpr = call i32 asm "; def $0", "=a"()
define i32 @inline_asm_1_agpr_virtreg_output() {
%vgpr = call i32 asm "; def $0", "=a"()
ret i32 %vgpr
}
; CHECK-LABEL: for function 'inline_asm_1_agpr_physreg_output':
; CHECK: DIVERGENT: %vgpr = call i32 asm "; def a0", "={a0}"()
define i32 @inline_asm_1_agpr_physreg_output() {
%vgpr = call i32 asm "; def a0", "={a0}"()
ret i32 %vgpr
}
; CHECK-LABEL: for function 'inline_asm_2_sgpr_virtreg_output':
; CHECK-NOT: DIVERGENT
define void @inline_asm_2_sgpr_virtreg_output() {
%asm = call { i32, i32 } asm "; def $0, $1", "=s,=s"()
%sgpr0 = extractvalue { i32, i32 } %asm, 0
%sgpr1 = extractvalue { i32, i32 } %asm, 1
store i32 %sgpr0, ptr addrspace(1) undef
store i32 %sgpr1, ptr addrspace(1) undef
ret void
}
; One output is SGPR, one is VGPR. Infer divergent for the aggregate, but uniform on the SGPR extract
; CHECK-LABEL: for function 'inline_asm_sgpr_vgpr_virtreg_output':
; CHECK: DIVERGENT: %asm = call { i32, i32 } asm "; def $0, $1", "=s,=v"()
; CHECK-NEXT: {{^[ \t]+}}%sgpr = extractvalue { i32, i32 } %asm, 0
; CHECK-NEXT: DIVERGENT: %vgpr = extractvalue { i32, i32 } %asm, 1
define void @inline_asm_sgpr_vgpr_virtreg_output() {
%asm = call { i32, i32 } asm "; def $0, $1", "=s,=v"()
%sgpr = extractvalue { i32, i32 } %asm, 0
%vgpr = extractvalue { i32, i32 } %asm, 1
store i32 %sgpr, ptr addrspace(1) undef
store i32 %vgpr, ptr addrspace(1) undef
ret void
}
; CHECK-LABEL: for function 'inline_asm_vgpr_sgpr_virtreg_output':
; CHECK: DIVERGENT: %asm = call { i32, i32 } asm "; def $0, $1", "=v,=s"()
; CHECK-NEXT: DIVERGENT: %vgpr = extractvalue { i32, i32 } %asm, 0
; CHECK-NEXT: {{^[ \t]+}}%sgpr = extractvalue { i32, i32 } %asm, 1
define void @inline_asm_vgpr_sgpr_virtreg_output() {
%asm = call { i32, i32 } asm "; def $0, $1", "=v,=s"()
%vgpr = extractvalue { i32, i32 } %asm, 0
%sgpr = extractvalue { i32, i32 } %asm, 1
store i32 %vgpr, ptr addrspace(1) undef
store i32 %sgpr, ptr addrspace(1) undef
ret void
}
; Have an extra output constraint
; CHECK-LABEL: for function 'multi_sgpr_inline_asm_output_input_constraint':
; CHECK-NOT: DIVERGENT
define void @multi_sgpr_inline_asm_output_input_constraint() {
%asm = call { i32, i32 } asm "; def $0, $1", "=s,=s,s"(i32 1234)
%sgpr0 = extractvalue { i32, i32 } %asm, 0
%sgpr1 = extractvalue { i32, i32 } %asm, 1
store i32 %sgpr0, ptr addrspace(1) undef
store i32 %sgpr1, ptr addrspace(1) undef
ret void
}
; CHECK-LABEL: for function 'inline_asm_vgpr_sgpr_virtreg_output_input_constraint':
; CHECK: DIVERGENT: %asm = call { i32, i32 } asm "; def $0, $1", "=v,=s,v"(i32 1234)
; CHECK-NEXT: DIVERGENT: %vgpr = extractvalue { i32, i32 } %asm, 0
; CHECK-NEXT: {{^[ \t]+}}%sgpr = extractvalue { i32, i32 } %asm, 1
define void @inline_asm_vgpr_sgpr_virtreg_output_input_constraint() {
%asm = call { i32, i32 } asm "; def $0, $1", "=v,=s,v"(i32 1234)
%vgpr = extractvalue { i32, i32 } %asm, 0
%sgpr = extractvalue { i32, i32 } %asm, 1
store i32 %vgpr, ptr addrspace(1) undef
store i32 %sgpr, ptr addrspace(1) undef
ret void
}