Adds a number of utilities that are used to help create and update memprof related metadata. These will be used during profile matching and annotation, as well as by the inliner when updating the metadata. Also adds unit tests for the utilities. See also related RFCs: RFC: Sanitizer-based Heap Profiler [1] RFC: A binary serialization format for MemProf [2] RFC: IR metadata format for MemProf [3] (Note that the IR metadata format has changed from the RFC during implementation, as described in the preceeding patch adding the basic metadata and verification support.) Depends on D128141. Differential Revision: https://reviews.llvm.org/D128854
227 lines
8.8 KiB
C++
227 lines
8.8 KiB
C++
//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains utilities to analyze memory profile information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemoryProfileInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::memprof;
|
|
|
|
#define DEBUG_TYPE "memory-profile-info"
|
|
|
|
// Upper bound on accesses per byte for marking an allocation cold.
|
|
cl::opt<float> MemProfAccessesPerByteColdThreshold(
|
|
"memprof-accesses-per-byte-cold-threshold", cl::init(10.0), cl::Hidden,
|
|
cl::desc("The threshold the accesses per byte must be under to consider "
|
|
"an allocation cold"));
|
|
|
|
// Lower bound on lifetime to mark an allocation cold (in addition to accesses
|
|
// per byte above). This is to avoid pessimizing short lived objects.
|
|
cl::opt<unsigned> MemProfMinLifetimeColdThreshold(
|
|
"memprof-min-lifetime-cold-threshold", cl::init(200), cl::Hidden,
|
|
cl::desc("The minimum lifetime (s) for an allocation to be considered "
|
|
"cold"));
|
|
|
|
AllocationType llvm::memprof::getAllocType(uint64_t MaxAccessCount,
|
|
uint64_t MinSize,
|
|
uint64_t MinLifetime) {
|
|
if (((float)MaxAccessCount) / MinSize < MemProfAccessesPerByteColdThreshold &&
|
|
// MinLifetime is expected to be in ms, so convert the threshold to ms.
|
|
MinLifetime >= MemProfMinLifetimeColdThreshold * 1000)
|
|
return AllocationType::Cold;
|
|
return AllocationType::NotCold;
|
|
}
|
|
|
|
MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
|
|
LLVMContext &Ctx) {
|
|
std::vector<Metadata *> StackVals;
|
|
for (auto Id : CallStack) {
|
|
auto *StackValMD =
|
|
ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
|
|
StackVals.push_back(StackValMD);
|
|
}
|
|
return MDNode::get(Ctx, StackVals);
|
|
}
|
|
|
|
MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
|
|
assert(MIB->getNumOperands() == 2);
|
|
// The stack metadata is the first operand of each memprof MIB metadata.
|
|
return cast<MDNode>(MIB->getOperand(0));
|
|
}
|
|
|
|
AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
|
|
assert(MIB->getNumOperands() == 2);
|
|
// The allocation type is currently the second operand of each memprof
|
|
// MIB metadata. This will need to change as we add additional allocation
|
|
// types that can be applied based on the allocation profile data.
|
|
auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
|
|
assert(MDS);
|
|
if (MDS->getString().equals("cold"))
|
|
return AllocationType::Cold;
|
|
return AllocationType::NotCold;
|
|
}
|
|
|
|
static std::string getAllocTypeAttributeString(AllocationType Type) {
|
|
switch (Type) {
|
|
case AllocationType::NotCold:
|
|
return "notcold";
|
|
break;
|
|
case AllocationType::Cold:
|
|
return "cold";
|
|
break;
|
|
default:
|
|
assert(false && "Unexpected alloc type");
|
|
}
|
|
llvm_unreachable("invalid alloc type");
|
|
}
|
|
|
|
static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
|
|
AllocationType AllocType) {
|
|
auto AllocTypeString = getAllocTypeAttributeString(AllocType);
|
|
auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
|
|
CI->addFnAttr(A);
|
|
}
|
|
|
|
static bool hasSingleAllocType(uint8_t AllocTypes) {
|
|
const unsigned NumAllocTypes = countPopulation(AllocTypes);
|
|
assert(NumAllocTypes != 0);
|
|
return NumAllocTypes == 1;
|
|
}
|
|
|
|
void CallStackTrie::addCallStack(AllocationType AllocType,
|
|
ArrayRef<uint64_t> StackIds) {
|
|
bool First = true;
|
|
CallStackTrieNode *Curr = nullptr;
|
|
for (auto StackId : StackIds) {
|
|
// If this is the first stack frame, add or update alloc node.
|
|
if (First) {
|
|
First = false;
|
|
if (Alloc) {
|
|
assert(AllocStackId == StackId);
|
|
Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
|
|
} else {
|
|
AllocStackId = StackId;
|
|
Alloc = new CallStackTrieNode(AllocType);
|
|
}
|
|
Curr = Alloc;
|
|
continue;
|
|
}
|
|
// Update existing caller node if it exists.
|
|
auto Next = Curr->Callers.find(StackId);
|
|
if (Next != Curr->Callers.end()) {
|
|
Curr = Next->second;
|
|
Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
|
|
continue;
|
|
}
|
|
// Otherwise add a new caller node.
|
|
auto *New = new CallStackTrieNode(AllocType);
|
|
Curr->Callers[StackId] = New;
|
|
Curr = New;
|
|
}
|
|
assert(Curr);
|
|
}
|
|
|
|
void CallStackTrie::addCallStack(MDNode *MIB) {
|
|
MDNode *StackMD = getMIBStackNode(MIB);
|
|
assert(StackMD);
|
|
std::vector<uint64_t> CallStack;
|
|
CallStack.reserve(StackMD->getNumOperands());
|
|
for (auto &MIBStackIter : StackMD->operands()) {
|
|
auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
|
|
assert(StackId);
|
|
CallStack.push_back(StackId->getZExtValue());
|
|
}
|
|
addCallStack(getMIBAllocType(MIB), CallStack);
|
|
}
|
|
|
|
static MDNode *createMIBNode(LLVMContext &Ctx,
|
|
std::vector<uint64_t> &MIBCallStack,
|
|
AllocationType AllocType) {
|
|
std::vector<Metadata *> MIBPayload(
|
|
{buildCallstackMetadata(MIBCallStack, Ctx)});
|
|
MIBPayload.push_back(
|
|
MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
|
|
return MDNode::get(Ctx, MIBPayload);
|
|
}
|
|
|
|
// Recursive helper to trim contexts and create metadata nodes.
|
|
// Caller should have pushed Node's loc to MIBCallStack. Doing this in the
|
|
// caller makes it simpler to handle the many early returns in this method.
|
|
bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
|
|
std::vector<uint64_t> &MIBCallStack,
|
|
std::vector<Metadata *> &MIBNodes,
|
|
bool CalleeHasAmbiguousCallerContext) {
|
|
// Trim context below the first node in a prefix with a single alloc type.
|
|
// Add an MIB record for the current call stack prefix.
|
|
if (hasSingleAllocType(Node->AllocTypes)) {
|
|
MIBNodes.push_back(
|
|
createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes));
|
|
return true;
|
|
}
|
|
|
|
// We don't have a single allocation for all the contexts sharing this prefix,
|
|
// so recursively descend into callers in trie.
|
|
if (!Node->Callers.empty()) {
|
|
bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
|
|
bool AddedMIBNodesForAllCallerContexts = true;
|
|
for (auto &Caller : Node->Callers) {
|
|
MIBCallStack.push_back(Caller.first);
|
|
AddedMIBNodesForAllCallerContexts &=
|
|
buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
|
|
NodeHasAmbiguousCallerContext);
|
|
// Remove Caller.
|
|
MIBCallStack.pop_back();
|
|
}
|
|
if (AddedMIBNodesForAllCallerContexts)
|
|
return true;
|
|
// We expect that the callers should be forced to add MIBs to disambiguate
|
|
// the context in this case (see below).
|
|
assert(!NodeHasAmbiguousCallerContext);
|
|
}
|
|
|
|
// If we reached here, then this node does not have a single allocation type,
|
|
// and we didn't add metadata for a longer call stack prefix including any of
|
|
// Node's callers. That means we never hit a single allocation type along all
|
|
// call stacks with this prefix. This can happen due to recursion collapsing
|
|
// or the stack being deeper than tracked by the profiler runtime, leading to
|
|
// contexts with different allocation types being merged. In that case, we
|
|
// trim the context just below the deepest context split, which is this
|
|
// node if the callee has an ambiguous caller context (multiple callers),
|
|
// since the recursive calls above returned false. Conservatively give it
|
|
// non-cold allocation type.
|
|
if (!CalleeHasAmbiguousCallerContext)
|
|
return false;
|
|
MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold));
|
|
return true;
|
|
}
|
|
|
|
// Build and attach the minimal necessary MIB metadata. If the alloc has a
|
|
// single allocation type, add a function attribute instead. Returns true if
|
|
// memprof metadata attached, false if not (attribute added).
|
|
bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
|
|
auto &Ctx = CI->getContext();
|
|
if (hasSingleAllocType(Alloc->AllocTypes)) {
|
|
addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes);
|
|
return false;
|
|
}
|
|
std::vector<uint64_t> MIBCallStack;
|
|
MIBCallStack.push_back(AllocStackId);
|
|
std::vector<Metadata *> MIBNodes;
|
|
assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
|
|
buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
|
|
/*CalleeHasAmbiguousCallerContext=*/true);
|
|
assert(MIBCallStack.size() == 1 &&
|
|
"Should only be left with Alloc's location in stack");
|
|
CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
|
|
return true;
|
|
}
|