Files
clang-p2996/llvm/lib/Target/PowerPC/PPCLoopInstrFormPrep.cpp
Nikita Popov dcf4b733ef [SCEVExpander] Make CanonicalMode handing in isSafeToExpand() more robust (PR50506)
isSafeToExpand() for addrecs depends on whether the SCEVExpander
will be used in CanonicalMode. At least one caller currently gets
this wrong, resulting in PR50506.

Fix this by a) making the CanonicalMode argument on the freestanding
functions required and b) adding member functions on SCEVExpander
that automatically take the SCEVExpander mode into account. We can
use the latter variant nearly everywhere, and thus make sure that
there is no chance of CanonicalMode mismatch.

Fixes https://github.com/llvm/llvm-project/issues/50506.

Differential Revision: https://reviews.llvm.org/D129630
2022-07-14 14:41:51 +02:00

1492 lines
55 KiB
C++

//===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to prepare loops for ppc preferred addressing
// modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with
// update)
// Additional PHIs are created for loop induction variables used by load/store
// instructions so that preferred addressing modes can be used.
//
// 1: DS/DQ form preparation, prepare the load/store instructions so that they
// can satisfy the DS/DQ form displacement requirements.
// Generically, this means transforming loops like this:
// for (int i = 0; i < n; ++i) {
// unsigned long x1 = *(unsigned long *)(p + i + 5);
// unsigned long x2 = *(unsigned long *)(p + i + 9);
// }
//
// to look like this:
//
// unsigned NewP = p + 5;
// for (int i = 0; i < n; ++i) {
// unsigned long x1 = *(unsigned long *)(i + NewP);
// unsigned long x2 = *(unsigned long *)(i + NewP + 4);
// }
//
// 2: D/DS form with update preparation, prepare the load/store instructions so
// that we can use update form to do pre-increment.
// Generically, this means transforming loops like this:
// for (int i = 0; i < n; ++i)
// array[i] = c;
//
// to look like this:
//
// T *p = array[-1];
// for (int i = 0; i < n; ++i)
// *++p = c;
//
// 3: common multiple chains for the load/stores with same offsets in the loop,
// so that we can reuse the offsets and reduce the register pressure in the
// loop. This transformation can also increase the loop ILP as now each chain
// uses its own loop induction add/addi. But this will increase the number of
// add/addi in the loop.
//
// Generically, this means transforming loops like this:
//
// char *p;
// A1 = p + base1
// A2 = p + base1 + offset
// B1 = p + base2
// B2 = p + base2 + offset
//
// for (int i = 0; i < n; i++)
// unsigned long x1 = *(unsigned long *)(A1 + i);
// unsigned long x2 = *(unsigned long *)(A2 + i)
// unsigned long x3 = *(unsigned long *)(B1 + i);
// unsigned long x4 = *(unsigned long *)(B2 + i);
// }
//
// to look like this:
//
// A1_new = p + base1 // chain 1
// B1_new = p + base2 // chain 2, now inside the loop, common offset is
// // reused.
//
// for (long long i = 0; i < n; i+=count) {
// unsigned long x1 = *(unsigned long *)(A1_new + i);
// unsigned long x2 = *(unsigned long *)((A1_new + i) + offset);
// unsigned long x3 = *(unsigned long *)(B1_new + i);
// unsigned long x4 = *(unsigned long *)((B1_new + i) + offset);
// }
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <cassert>
#include <iterator>
#include <utility>
#define DEBUG_TYPE "ppc-loop-instr-form-prep"
using namespace llvm;
static cl::opt<unsigned>
MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24),
cl::desc("Potential common base number threshold per function "
"for PPC loop prep"));
static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update",
cl::init(true), cl::Hidden,
cl::desc("prefer update form when ds form is also a update form"));
static cl::opt<bool> EnableUpdateFormForNonConstInc(
"ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden,
cl::desc("prepare update form when the load/store increment is a loop "
"invariant non-const value."));
static cl::opt<bool> EnableChainCommoning(
"ppc-formprep-chain-commoning", cl::init(false), cl::Hidden,
cl::desc("Enable chain commoning in PPC loop prepare pass."));
// Sum of following 3 per loop thresholds for all loops can not be larger
// than MaxVarsPrep.
// now the thresholds for each kind prep are exterimental values on Power9.
static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars",
cl::Hidden, cl::init(3),
cl::desc("Potential PHI threshold per loop for PPC loop prep of update "
"form"));
static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars",
cl::Hidden, cl::init(3),
cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form"));
static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars",
cl::Hidden, cl::init(8),
cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form"));
// Commoning chain will reduce the register pressure, so we don't consider about
// the PHI nodes number.
// But commoning chain will increase the addi/add number in the loop and also
// increase loop ILP. Maximum chain number should be same with hardware
// IssueWidth, because we won't benefit from ILP if the parallel chains number
// is bigger than IssueWidth. We assume there are 2 chains in one bucket, so
// there would be 4 buckets at most on P9(IssueWidth is 8).
static cl::opt<unsigned> MaxVarsChainCommon(
"ppc-chaincommon-max-vars", cl::Hidden, cl::init(4),
cl::desc("Bucket number per loop for PPC loop chain common"));
// If would not be profitable if the common base has only one load/store, ISEL
// should already be able to choose best load/store form based on offset for
// single load/store. Set minimal profitable value default to 2 and make it as
// an option.
static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold",
cl::Hidden, cl::init(2),
cl::desc("Minimal common base load/store instructions triggering DS/DQ form "
"preparation"));
static cl::opt<unsigned> ChainCommonPrepMinThreshold(
"ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4),
cl::desc("Minimal common base load/store instructions triggering chain "
"commoning preparation. Must be not smaller than 4"));
STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form");
STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form");
STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form");
STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten");
STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten");
STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten");
STATISTIC(ChainCommoningRewritten, "Num of commoning chains");
namespace {
struct BucketElement {
BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {}
BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {}
const SCEV *Offset;
Instruction *Instr;
};
struct Bucket {
Bucket(const SCEV *B, Instruction *I)
: BaseSCEV(B), Elements(1, BucketElement(I)) {
ChainSize = 0;
}
// The base of the whole bucket.
const SCEV *BaseSCEV;
// All elements in the bucket. In the bucket, the element with the BaseSCEV
// has no offset and all other elements are stored as offsets to the
// BaseSCEV.
SmallVector<BucketElement, 16> Elements;
// The potential chains size. This is used for chain commoning only.
unsigned ChainSize;
// The base for each potential chain. This is used for chain commoning only.
SmallVector<BucketElement, 16> ChainBases;
};
// "UpdateForm" is not a real PPC instruction form, it stands for dform
// load/store with update like ldu/stdu, or Prefetch intrinsic.
// For DS form instructions, their displacements must be multiple of 4.
// For DQ form instructions, their displacements must be multiple of 16.
enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning };
class PPCLoopInstrFormPrep : public FunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
PPCLoopInstrFormPrep() : FunctionPass(ID) {
initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
}
PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
bool runOnFunction(Function &F) override;
private:
PPCTargetMachine *TM = nullptr;
const PPCSubtarget *ST;
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
bool PreserveLCSSA;
bool HasCandidateForPrepare;
/// Successful preparation number for Update/DS/DQ form in all inner most
/// loops. One successful preparation will put one common base out of loop,
/// this may leads to register presure like LICM does.
/// Make sure total preparation number can be controlled by option.
unsigned SuccPrepCount;
bool runOnLoop(Loop *L);
/// Check if required PHI node is already exist in Loop \p L.
bool alreadyPrepared(Loop *L, Instruction *MemI,
const SCEV *BasePtrStartSCEV,
const SCEV *BasePtrIncSCEV, PrepForm Form);
/// Get the value which defines the increment SCEV \p BasePtrIncSCEV.
Value *getNodeForInc(Loop *L, Instruction *MemI,
const SCEV *BasePtrIncSCEV);
/// Common chains to reuse offsets for a loop to reduce register pressure.
bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets);
/// Find out the potential commoning chains and their bases.
bool prepareBasesForCommoningChains(Bucket &BucketChain);
/// Rewrite load/store according to the common chains.
bool
rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket,
SmallSet<BasicBlock *, 16> &BBChanged);
/// Collect condition matched(\p isValidCandidate() returns true)
/// candidates in Loop \p L.
SmallVector<Bucket, 16> collectCandidates(
Loop *L,
std::function<bool(const Instruction *, Value *, const Type *)>
isValidCandidate,
std::function<bool(const SCEV *)> isValidDiff,
unsigned MaxCandidateNum);
/// Add a candidate to candidates \p Buckets if diff between candidate and
/// one base in \p Buckets matches \p isValidDiff.
void addOneCandidate(Instruction *MemI, const SCEV *LSCEV,
SmallVector<Bucket, 16> &Buckets,
std::function<bool(const SCEV *)> isValidDiff,
unsigned MaxCandidateNum);
/// Prepare all candidates in \p Buckets for update form.
bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets);
/// Prepare all candidates in \p Buckets for displacement form, now for
/// ds/dq.
bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form);
/// Prepare for one chain \p BucketChain, find the best base element and
/// update all other elements in \p BucketChain accordingly.
/// \p Form is used to find the best base element.
/// If success, best base element must be stored as the first element of
/// \p BucketChain.
/// Return false if no base element found, otherwise return true.
bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form);
/// Prepare for one chain \p BucketChain, find the best base element and
/// update all other elements in \p BucketChain accordingly.
/// If success, best base element must be stored as the first element of
/// \p BucketChain.
/// Return false if no base element found, otherwise return true.
bool prepareBaseForUpdateFormChain(Bucket &BucketChain);
/// Rewrite load/store instructions in \p BucketChain according to
/// preparation.
bool rewriteLoadStores(Loop *L, Bucket &BucketChain,
SmallSet<BasicBlock *, 16> &BBChanged,
PrepForm Form);
/// Rewrite for the base load/store of a chain.
std::pair<Instruction *, Instruction *>
rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
Instruction *BaseMemI, bool CanPreInc, PrepForm Form,
SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs);
/// Rewrite for the other load/stores of a chain according to the new \p
/// Base.
Instruction *
rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base,
const BucketElement &Element, Value *OffToBase,
SmallPtrSet<Value *, 16> &DeletedPtrs);
};
} // end anonymous namespace
char PPCLoopInstrFormPrep::ID = 0;
static const char *name = "Prepare loop for ppc preferred instruction forms";
INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
static constexpr StringRef PHINodeNameSuffix = ".phi";
static constexpr StringRef CastNodeNameSuffix = ".cast";
static constexpr StringRef GEPNodeIncNameSuffix = ".inc";
static constexpr StringRef GEPNodeOffNameSuffix = ".off";
FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) {
return new PPCLoopInstrFormPrep(TM);
}
static bool IsPtrInBounds(Value *BasePtr) {
Value *StrippedBasePtr = BasePtr;
while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr))
StrippedBasePtr = BC->getOperand(0);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr))
return GEP->isInBounds();
return false;
}
static std::string getInstrName(const Value *I, StringRef Suffix) {
assert(I && "Invalid paramater!");
if (I->hasName())
return (I->getName() + Suffix).str();
else
return "";
}
static Value *getPointerOperandAndType(Value *MemI,
Type **PtrElementType = nullptr) {
Value *PtrValue = nullptr;
Type *PointerElementType = nullptr;
if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) {
PtrValue = LMemI->getPointerOperand();
PointerElementType = LMemI->getType();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) {
PtrValue = SMemI->getPointerOperand();
PointerElementType = SMemI->getValueOperand()->getType();
} else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) {
PointerElementType = Type::getInt8Ty(MemI->getContext());
if (IMemI->getIntrinsicID() == Intrinsic::prefetch ||
IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) {
PtrValue = IMemI->getArgOperand(0);
} else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) {
PtrValue = IMemI->getArgOperand(1);
}
}
/*Get ElementType if PtrElementType is not null.*/
if (PtrElementType)
*PtrElementType = PointerElementType;
return PtrValue;
}
bool PPCLoopInstrFormPrep::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
ST = TM ? TM->getSubtargetImpl(F) : nullptr;
SuccPrepCount = 0;
bool MadeChange = false;
for (Loop *I : *LI)
for (Loop *L : depth_first(I))
MadeChange |= runOnLoop(L);
return MadeChange;
}
// Finding the minimal(chain_number + reusable_offset_number) is a complicated
// algorithmic problem.
// For now, the algorithm used here is simply adjusted to handle the case for
// manually unrolling cases.
// FIXME: use a more powerful algorithm to find minimal sum of chain_number and
// reusable_offset_number for one base with multiple offsets.
bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) {
// The minimal size for profitable chain commoning:
// A1 = base + offset1
// A2 = base + offset2 (offset2 - offset1 = X)
// A3 = base + offset3
// A4 = base + offset4 (offset4 - offset3 = X)
// ======>
// base1 = base + offset1
// base2 = base + offset3
// A1 = base1
// A2 = base1 + X
// A3 = base2
// A4 = base2 + X
//
// There is benefit because of reuse of offest 'X'.
assert(ChainCommonPrepMinThreshold >= 4 &&
"Thredhold can not be smaller than 4!\n");
if (CBucket.Elements.size() < ChainCommonPrepMinThreshold)
return false;
// We simply select the FirstOffset as the first reusable offset between each
// chain element 1 and element 0.
const SCEV *FirstOffset = CBucket.Elements[1].Offset;
// Figure out how many times above FirstOffset is used in the chain.
// For a success commoning chain candidate, offset difference between each
// chain element 1 and element 0 must be also FirstOffset.
unsigned FirstOffsetReusedCount = 1;
// Figure out how many times above FirstOffset is used in the first chain.
// Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain
unsigned FirstOffsetReusedCountInFirstChain = 1;
unsigned EleNum = CBucket.Elements.size();
bool SawChainSeparater = false;
for (unsigned j = 2; j != EleNum; ++j) {
if (SE->getMinusSCEV(CBucket.Elements[j].Offset,
CBucket.Elements[j - 1].Offset) == FirstOffset) {
if (!SawChainSeparater)
FirstOffsetReusedCountInFirstChain++;
FirstOffsetReusedCount++;
} else
// For now, if we meet any offset which is not FirstOffset, we assume we
// find a new Chain.
// This makes us miss some opportunities.
// For example, we can common:
//
// {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB}
//
// as two chains:
// {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}}
// FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2
//
// But we fail to common:
//
// {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA}
// FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1
SawChainSeparater = true;
}
// FirstOffset is not reused, skip this bucket.
if (FirstOffsetReusedCount == 1)
return false;
unsigned ChainNum =
FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain;
// All elements are increased by FirstOffset.
// The number of chains should be sqrt(EleNum).
if (!SawChainSeparater)
ChainNum = (unsigned)sqrt((double)EleNum);
CBucket.ChainSize = (unsigned)(EleNum / ChainNum);
// If this is not a perfect chain(eg: not all elements can be put inside
// commoning chains.), skip now.
if (CBucket.ChainSize * ChainNum != EleNum)
return false;
if (SawChainSeparater) {
// Check that the offset seqs are the same for all chains.
for (unsigned i = 1; i < CBucket.ChainSize; i++)
for (unsigned j = 1; j < ChainNum; j++)
if (CBucket.Elements[i].Offset !=
SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset,
CBucket.Elements[j * CBucket.ChainSize].Offset))
return false;
}
for (unsigned i = 0; i < ChainNum; i++)
CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]);
LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n");
return true;
}
bool PPCLoopInstrFormPrep::chainCommoning(Loop *L,
SmallVector<Bucket, 16> &Buckets) {
bool MadeChange = false;
if (Buckets.empty())
return MadeChange;
SmallSet<BasicBlock *, 16> BBChanged;
for (auto &Bucket : Buckets) {
if (prepareBasesForCommoningChains(Bucket))
MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged);
}
if (MadeChange)
for (auto *BB : BBChanged)
DeleteDeadPHIs(BB);
return MadeChange;
}
bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains(
Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) {
bool MadeChange = false;
assert(Bucket.Elements.size() ==
Bucket.ChainBases.size() * Bucket.ChainSize &&
"invalid bucket for chain commoning!\n");
SmallPtrSet<Value *, 16> DeletedPtrs;
BasicBlock *Header = L->getHeader();
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(),
"loopprepare-chaincommon");
for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) {
unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx;
const SCEV *BaseSCEV =
ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV,
Bucket.Elements[BaseElemIdx].Offset)
: Bucket.BaseSCEV;
const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV);
// Make sure the base is able to expand.
if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
return MadeChange;
assert(BasePtrSCEV->isAffine() &&
"Invalid SCEV type for the base ptr for a candidate chain!\n");
std::pair<Instruction *, Instruction *> Base = rewriteForBase(
L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr,
false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs);
if (!Base.first || !Base.second)
return MadeChange;
// Keep track of the replacement pointer values we've inserted so that we
// don't generate more pointer values than necessary.
SmallPtrSet<Value *, 16> NewPtrs;
NewPtrs.insert(Base.first);
for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize;
++Idx) {
BucketElement &I = Bucket.Elements[Idx];
Value *Ptr = getPointerOperandAndType(I.Instr);
assert(Ptr && "No pointer operand");
if (NewPtrs.count(Ptr))
continue;
const SCEV *OffsetSCEV =
BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset,
Bucket.Elements[BaseElemIdx].Offset)
: Bucket.Elements[Idx].Offset;
// Make sure offset is able to expand. Only need to check one time as the
// offsets are reused between different chains.
if (!BaseElemIdx)
if (!SCEVE.isSafeToExpand(OffsetSCEV))
return false;
Value *OffsetValue = SCEVE.expandCodeFor(
OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator());
Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx],
OffsetValue, DeletedPtrs);
assert(NewPtr && "Wrong rewrite!\n");
NewPtrs.insert(NewPtr);
}
++ChainCommoningRewritten;
}
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted below, causing the AssertingVH in the cache to trigger.
SCEVE.clear();
for (auto *Ptr : DeletedPtrs) {
if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
BBChanged.insert(IDel->getParent());
RecursivelyDeleteTriviallyDeadInstructions(Ptr);
}
MadeChange = true;
return MadeChange;
}
// Rewrite the new base according to BasePtrSCEV.
// bb.loop.preheader:
// %newstart = ...
// bb.loop.body:
// %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ]
// ...
// %add = getelementptr %phinode, %inc
//
// First returned instruciton is %phinode (or a type cast to %phinode), caller
// needs this value to rewrite other load/stores in the same chain.
// Second returned instruction is %add, caller needs this value to rewrite other
// load/stores in the same chain.
std::pair<Instruction *, Instruction *>
PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
Instruction *BaseMemI, bool CanPreInc,
PrepForm Form, SCEVExpander &SCEVE,
SmallPtrSet<Value *, 16> &DeletedPtrs) {
LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n");
assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?");
Value *BasePtr = getPointerOperandAndType(BaseMemI);
assert(BasePtr && "No pointer operand");
Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext());
Type *I8PtrTy =
Type::getInt8PtrTy(BaseMemI->getParent()->getContext(),
BasePtr->getType()->getPointerAddressSpace());
bool IsConstantInc = false;
const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE);
Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV);
const SCEVConstant *BasePtrIncConstantSCEV =
dyn_cast<SCEVConstant>(BasePtrIncSCEV);
if (BasePtrIncConstantSCEV)
IsConstantInc = true;
// No valid representation for the increment.
if (!IncNode) {
LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n");
return std::make_pair(nullptr, nullptr);
}
if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) {
LLVM_DEBUG(
dbgs()
<< "Update form prepare for non-const increment is not enabled!\n");
return std::make_pair(nullptr, nullptr);
}
const SCEV *BasePtrStartSCEV = nullptr;
if (CanPreInc) {
assert(SE->isLoopInvariant(BasePtrIncSCEV, L) &&
"Increment is not loop invariant!\n");
BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(),
IsConstantInc ? BasePtrIncConstantSCEV
: BasePtrIncSCEV);
} else
BasePtrStartSCEV = BasePtrSCEV->getStart();
if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) {
LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n");
return std::make_pair(nullptr, nullptr);
}
LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n");
BasicBlock *Header = L->getHeader();
unsigned HeaderLoopPredCount = pred_size(Header);
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount,
getInstrName(BaseMemI, PHINodeNameSuffix),
Header->getFirstNonPHI());
Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy,
LoopPredecessor->getTerminator());
// Note that LoopPredecessor might occur in the predecessor list multiple
// times, and we need to add it the right number of times.
for (auto PI : predecessors(Header)) {
if (PI != LoopPredecessor)
continue;
NewPHI->addIncoming(BasePtrStart, LoopPredecessor);
}
Instruction *PtrInc = nullptr;
Instruction *NewBasePtr = nullptr;
if (CanPreInc) {
Instruction *InsPoint = &*Header->getFirstInsertionPt();
PtrInc = GetElementPtrInst::Create(
I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
InsPoint);
cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
for (auto PI : predecessors(Header)) {
if (PI == LoopPredecessor)
continue;
NewPHI->addIncoming(PtrInc, PI);
}
if (PtrInc->getType() != BasePtr->getType())
NewBasePtr =
new BitCastInst(PtrInc, BasePtr->getType(),
getInstrName(PtrInc, CastNodeNameSuffix), InsPoint);
else
NewBasePtr = PtrInc;
} else {
// Note that LoopPredecessor might occur in the predecessor list multiple
// times, and we need to make sure no more incoming value for them in PHI.
for (auto PI : predecessors(Header)) {
if (PI == LoopPredecessor)
continue;
// For the latch predecessor, we need to insert a GEP just before the
// terminator to increase the address.
BasicBlock *BB = PI;
Instruction *InsPoint = BB->getTerminator();
PtrInc = GetElementPtrInst::Create(
I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
InsPoint);
cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
NewPHI->addIncoming(PtrInc, PI);
}
PtrInc = NewPHI;
if (NewPHI->getType() != BasePtr->getType())
NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(),
getInstrName(NewPHI, CastNodeNameSuffix),
&*Header->getFirstInsertionPt());
else
NewBasePtr = NewPHI;
}
BasePtr->replaceAllUsesWith(NewBasePtr);
DeletedPtrs.insert(BasePtr);
return std::make_pair(NewBasePtr, PtrInc);
}
Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement(
std::pair<Instruction *, Instruction *> Base, const BucketElement &Element,
Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) {
Instruction *NewBasePtr = Base.first;
Instruction *PtrInc = Base.second;
assert((NewBasePtr && PtrInc) && "base does not exist!\n");
Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext());
Value *Ptr = getPointerOperandAndType(Element.Instr);
assert(Ptr && "No pointer operand");
Instruction *RealNewPtr;
if (!Element.Offset ||
(isa<SCEVConstant>(Element.Offset) &&
cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) {
RealNewPtr = NewBasePtr;
} else {
Instruction *PtrIP = dyn_cast<Instruction>(Ptr);
if (PtrIP && isa<Instruction>(NewBasePtr) &&
cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent())
PtrIP = nullptr;
else if (PtrIP && isa<PHINode>(PtrIP))
PtrIP = &*PtrIP->getParent()->getFirstInsertionPt();
else if (!PtrIP)
PtrIP = Element.Instr;
assert(OffToBase && "There should be an offset for non base element!\n");
GetElementPtrInst *NewPtr = GetElementPtrInst::Create(
I8Ty, PtrInc, OffToBase,
getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP);
if (!PtrIP)
NewPtr->insertAfter(cast<Instruction>(PtrInc));
NewPtr->setIsInBounds(IsPtrInBounds(Ptr));
RealNewPtr = NewPtr;
}
Instruction *ReplNewPtr;
if (Ptr->getType() != RealNewPtr->getType()) {
ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(),
getInstrName(Ptr, CastNodeNameSuffix));
ReplNewPtr->insertAfter(RealNewPtr);
} else
ReplNewPtr = RealNewPtr;
Ptr->replaceAllUsesWith(ReplNewPtr);
DeletedPtrs.insert(Ptr);
return ReplNewPtr;
}
void PPCLoopInstrFormPrep::addOneCandidate(
Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets,
std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
assert((MemI && getPointerOperandAndType(MemI)) &&
"Candidate should be a memory instruction.");
assert(LSCEV && "Invalid SCEV for Ptr value.");
bool FoundBucket = false;
for (auto &B : Buckets) {
if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) !=
cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE))
continue;
const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
if (isValidDiff(Diff)) {
B.Elements.push_back(BucketElement(Diff, MemI));
FoundBucket = true;
break;
}
}
if (!FoundBucket) {
if (Buckets.size() == MaxCandidateNum) {
LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit "
<< MaxCandidateNum << "\n");
return;
}
Buckets.push_back(Bucket(LSCEV, MemI));
}
}
SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates(
Loop *L,
std::function<bool(const Instruction *, Value *, const Type *)>
isValidCandidate,
std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
SmallVector<Bucket, 16> Buckets;
for (const auto &BB : L->blocks())
for (auto &J : *BB) {
Value *PtrValue = nullptr;
Type *PointerElementType = nullptr;
PtrValue = getPointerOperandAndType(&J, &PointerElementType);
if (!PtrValue)
continue;
if (PtrValue->getType()->getPointerAddressSpace())
continue;
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
if (!LARSCEV || LARSCEV->getLoop() != L)
continue;
// Mark that we have candidates for preparing.
HasCandidateForPrepare = true;
if (isValidCandidate(&J, PtrValue, PointerElementType))
addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum);
}
return Buckets;
}
bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain,
PrepForm Form) {
// RemainderOffsetInfo details:
// key: value of (Offset urem DispConstraint). For DSForm, it can
// be [0, 4).
// first of pair: the index of first BucketElement whose remainder is equal
// to key. For key 0, this value must be 0.
// second of pair: number of load/stores with the same remainder.
DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo;
for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
if (!BucketChain.Elements[j].Offset)
RemainderOffsetInfo[0] = std::make_pair(0, 1);
else {
unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset)
->getAPInt()
.urem(Form);
if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end())
RemainderOffsetInfo[Remainder] = std::make_pair(j, 1);
else
RemainderOffsetInfo[Remainder].second++;
}
}
// Currently we choose the most profitable base as the one which has the max
// number of load/store with same remainder.
// FIXME: adjust the base selection strategy according to load/store offset
// distribution.
// For example, if we have one candidate chain for DS form preparation, which
// contains following load/stores with different remainders:
// 1: 10 load/store whose remainder is 1;
// 2: 9 load/store whose remainder is 2;
// 3: 1 for remainder 3 and 0 for remainder 0;
// Now we will choose the first load/store whose remainder is 1 as base and
// adjust all other load/stores according to new base, so we will get 10 DS
// form and 10 X form.
// But we should be more clever, for this case we could use two bases, one for
// remainder 1 and the other for remainder 2, thus we could get 19 DS form and
// 1 X form.
unsigned MaxCountRemainder = 0;
for (unsigned j = 0; j < (unsigned)Form; j++)
if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) &&
RemainderOffsetInfo[j].second >
RemainderOffsetInfo[MaxCountRemainder].second)
MaxCountRemainder = j;
// Abort when there are too few insts with common base.
if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold)
return false;
// If the first value is most profitable, no needed to adjust BucketChain
// elements as they are substracted the first value when collecting.
if (MaxCountRemainder == 0)
return true;
// Adjust load/store to the new chosen base.
const SCEV *Offset =
BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset;
BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
for (auto &E : BucketChain.Elements) {
if (E.Offset)
E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
else
E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
}
std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first],
BucketChain.Elements[0]);
return true;
}
// FIXME: implement a more clever base choosing policy.
// Currently we always choose an exist load/store offset. This maybe lead to
// suboptimal code sequences. For example, for one DS chain with offsets
// {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp
// for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a
// multipler of 4, it cannot be represented by sint16.
bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) {
// We have a choice now of which instruction's memory operand we use as the
// base for the generated PHI. Always picking the first instruction in each
// bucket does not work well, specifically because that instruction might
// be a prefetch (and there are no pre-increment dcbt variants). Otherwise,
// the choice is somewhat arbitrary, because the backend will happily
// generate direct offsets from both the pre-incremented and
// post-incremented pointer values. Thus, we'll pick the first non-prefetch
// instruction in each bucket, and adjust the recurrence and other offsets
// accordingly.
for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr))
if (II->getIntrinsicID() == Intrinsic::prefetch)
continue;
// If we'd otherwise pick the first element anyway, there's nothing to do.
if (j == 0)
break;
// If our chosen element has no offset from the base pointer, there's
// nothing to do.
if (!BucketChain.Elements[j].Offset ||
cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero())
break;
const SCEV *Offset = BucketChain.Elements[j].Offset;
BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
for (auto &E : BucketChain.Elements) {
if (E.Offset)
E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
else
E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
}
std::swap(BucketChain.Elements[j], BucketChain.Elements[0]);
break;
}
return true;
}
bool PPCLoopInstrFormPrep::rewriteLoadStores(
Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged,
PrepForm Form) {
bool MadeChange = false;
const SCEVAddRecExpr *BasePtrSCEV =
cast<SCEVAddRecExpr>(BucketChain.BaseSCEV);
if (!BasePtrSCEV->isAffine())
return MadeChange;
BasicBlock *Header = L->getHeader();
SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(),
"loopprepare-formrewrite");
if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
return MadeChange;
SmallPtrSet<Value *, 16> DeletedPtrs;
// For some DS form load/store instructions, it can also be an update form,
// if the stride is constant and is a multipler of 4. Use update form if
// prefer it.
bool CanPreInc = (Form == UpdateForm ||
((Form == DSForm) &&
isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) &&
!cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE))
->getAPInt()
.urem(4) &&
PreferUpdateForm));
std::pair<Instruction *, Instruction *> Base =
rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr,
CanPreInc, Form, SCEVE, DeletedPtrs);
if (!Base.first || !Base.second)
return MadeChange;
// Keep track of the replacement pointer values we've inserted so that we
// don't generate more pointer values than necessary.
SmallPtrSet<Value *, 16> NewPtrs;
NewPtrs.insert(Base.first);
for (auto I = std::next(BucketChain.Elements.begin()),
IE = BucketChain.Elements.end(); I != IE; ++I) {
Value *Ptr = getPointerOperandAndType(I->Instr);
assert(Ptr && "No pointer operand");
if (NewPtrs.count(Ptr))
continue;
Instruction *NewPtr = rewriteForBucketElement(
Base, *I,
I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr,
DeletedPtrs);
assert(NewPtr && "wrong rewrite!\n");
NewPtrs.insert(NewPtr);
}
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted below, causing the AssertingVH in the cache to trigger.
SCEVE.clear();
for (auto *Ptr : DeletedPtrs) {
if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
BBChanged.insert(IDel->getParent());
RecursivelyDeleteTriviallyDeadInstructions(Ptr);
}
MadeChange = true;
SuccPrepCount++;
if (Form == DSForm && !CanPreInc)
DSFormChainRewritten++;
else if (Form == DQForm)
DQFormChainRewritten++;
else if (Form == UpdateForm || (Form == DSForm && CanPreInc))
UpdFormChainRewritten++;
return MadeChange;
}
bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L,
SmallVector<Bucket, 16> &Buckets) {
bool MadeChange = false;
if (Buckets.empty())
return MadeChange;
SmallSet<BasicBlock *, 16> BBChanged;
for (auto &Bucket : Buckets)
// The base address of each bucket is transformed into a phi and the others
// are rewritten based on new base.
if (prepareBaseForUpdateFormChain(Bucket))
MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm);
if (MadeChange)
for (auto *BB : BBChanged)
DeleteDeadPHIs(BB);
return MadeChange;
}
bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L,
SmallVector<Bucket, 16> &Buckets,
PrepForm Form) {
bool MadeChange = false;
if (Buckets.empty())
return MadeChange;
SmallSet<BasicBlock *, 16> BBChanged;
for (auto &Bucket : Buckets) {
if (Bucket.Elements.size() < DispFormPrepMinThreshold)
continue;
if (prepareBaseForDispFormChain(Bucket, Form))
MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form);
}
if (MadeChange)
for (auto *BB : BBChanged)
DeleteDeadPHIs(BB);
return MadeChange;
}
// Find the loop invariant increment node for SCEV BasePtrIncSCEV.
// bb.loop.preheader:
// %start = ...
// bb.loop.body:
// %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ]
// ...
// %add = add %phinode, %inc ; %inc is what we want to get.
//
Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI,
const SCEV *BasePtrIncSCEV) {
// If the increment is a constant, no definition is needed.
// Return the value directly.
if (isa<SCEVConstant>(BasePtrIncSCEV))
return cast<SCEVConstant>(BasePtrIncSCEV)->getValue();
if (!SE->isLoopInvariant(BasePtrIncSCEV, L))
return nullptr;
BasicBlock *BB = MemI->getParent();
if (!BB)
return nullptr;
BasicBlock *LatchBB = L->getLoopLatch();
if (!LatchBB)
return nullptr;
// Run through the PHIs and check their operands to find valid representation
// for the increment SCEV.
iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
for (auto &CurrentPHI : PHIIter) {
PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
if (!CurrentPHINode)
continue;
if (!SE->isSCEVable(CurrentPHINode->getType()))
continue;
const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
if (!PHIBasePtrSCEV)
continue;
const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE);
if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV))
continue;
// Get the incoming value from the loop latch and check if the value has
// the add form with the required increment.
if (Instruction *I = dyn_cast<Instruction>(
CurrentPHINode->getIncomingValueForBlock(LatchBB))) {
Value *StrippedBaseI = I;
while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI))
StrippedBaseI = BC->getOperand(0);
Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI);
if (!StrippedI)
continue;
// LSR pass may add a getelementptr instruction to do the loop increment,
// also search in that getelementptr instruction.
if (StrippedI->getOpcode() == Instruction::Add ||
(StrippedI->getOpcode() == Instruction::GetElementPtr &&
StrippedI->getNumOperands() == 2)) {
if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV)
return StrippedI->getOperand(0);
if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV)
return StrippedI->getOperand(1);
}
}
}
return nullptr;
}
// In order to prepare for the preferred instruction form, a PHI is added.
// This function will check to see if that PHI already exists and will return
// true if it found an existing PHI with the matched start and increment as the
// one we wanted to create.
bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI,
const SCEV *BasePtrStartSCEV,
const SCEV *BasePtrIncSCEV,
PrepForm Form) {
BasicBlock *BB = MemI->getParent();
if (!BB)
return false;
BasicBlock *PredBB = L->getLoopPredecessor();
BasicBlock *LatchBB = L->getLoopLatch();
if (!PredBB || !LatchBB)
return false;
// Run through the PHIs and see if we have some that looks like a preparation
iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
for (auto & CurrentPHI : PHIIter) {
PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
if (!CurrentPHINode)
continue;
if (!SE->isSCEVable(CurrentPHINode->getType()))
continue;
const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
if (!PHIBasePtrSCEV)
continue;
const SCEVConstant *PHIBasePtrIncSCEV =
dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE));
if (!PHIBasePtrIncSCEV)
continue;
if (CurrentPHINode->getNumIncomingValues() == 2) {
if ((CurrentPHINode->getIncomingBlock(0) == LatchBB &&
CurrentPHINode->getIncomingBlock(1) == PredBB) ||
(CurrentPHINode->getIncomingBlock(1) == LatchBB &&
CurrentPHINode->getIncomingBlock(0) == PredBB)) {
if (PHIBasePtrIncSCEV == BasePtrIncSCEV) {
// The existing PHI (CurrentPHINode) has the same start and increment
// as the PHI that we wanted to create.
if ((Form == UpdateForm || Form == ChainCommoning ) &&
PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) {
++PHINodeAlreadyExistsUpdate;
return true;
}
if (Form == DSForm || Form == DQForm) {
const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV));
if (Diff && !Diff->getAPInt().urem(Form)) {
if (Form == DSForm)
++PHINodeAlreadyExistsDS;
else
++PHINodeAlreadyExistsDQ;
return true;
}
}
}
}
}
}
return false;
}
bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) {
bool MadeChange = false;
// Only prep. the inner-most loop
if (!L->isInnermost())
return MadeChange;
// Return if already done enough preparation.
if (SuccPrepCount >= MaxVarsPrep)
return MadeChange;
LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
BasicBlock *LoopPredecessor = L->getLoopPredecessor();
// If there is no loop predecessor, or the loop predecessor's terminator
// returns a value (which might contribute to determining the loop's
// iteration space), insert a new preheader for the loop.
if (!LoopPredecessor ||
!LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
if (LoopPredecessor)
MadeChange = true;
}
if (!LoopPredecessor) {
LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n");
return MadeChange;
}
// Check if a load/store has update form. This lambda is used by function
// collectCandidates which can collect candidates for types defined by lambda.
auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue,
const Type *PointerElementType) {
assert((PtrValue && I) && "Invalid parameter!");
// There are no update forms for Altivec vector load/stores.
if (ST && ST->hasAltivec() && PointerElementType->isVectorTy())
return false;
// There are no update forms for P10 lxvp/stxvp intrinsic.
auto *II = dyn_cast<IntrinsicInst>(I);
if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) ||
II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp))
return false;
// See getPreIndexedAddressParts, the displacement for LDU/STDU has to
// be 4's multiple (DS-form). For i64 loads/stores when the displacement
// fits in a 16-bit signed field but isn't a multiple of 4, it will be
// useless and possible to break some original well-form addressing mode
// to make this pre-inc prep for it.
if (PointerElementType->isIntegerTy(64)) {
const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L);
const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
if (!LARSCEV || LARSCEV->getLoop() != L)
return false;
if (const SCEVConstant *StepConst =
dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) {
const APInt &ConstInt = StepConst->getValue()->getValue();
if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0)
return false;
}
}
return true;
};
// Check if a load/store has DS form.
auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue,
const Type *PointerElementType) {
assert((PtrValue && I) && "Invalid parameter!");
if (isa<IntrinsicInst>(I))
return false;
return (PointerElementType->isIntegerTy(64)) ||
(PointerElementType->isFloatTy()) ||
(PointerElementType->isDoubleTy()) ||
(PointerElementType->isIntegerTy(32) &&
llvm::any_of(I->users(),
[](const User *U) { return isa<SExtInst>(U); }));
};
// Check if a load/store has DQ form.
auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue,
const Type *PointerElementType) {
assert((PtrValue && I) && "Invalid parameter!");
// Check if it is a P10 lxvp/stxvp intrinsic.
auto *II = dyn_cast<IntrinsicInst>(I);
if (II)
return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp ||
II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp;
// Check if it is a P9 vector load/store.
return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy());
};
// Check if a load/store is candidate for chain commoning.
// If the SCEV is only with one ptr operand in its start, we can use that
// start as a chain separator. Mark this load/store as a candidate.
auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue,
const Type *PointerElementType) {
const SCEVAddRecExpr *ARSCEV =
cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L));
if (!ARSCEV)
return false;
if (!ARSCEV->isAffine())
return false;
const SCEV *Start = ARSCEV->getStart();
// A single pointer. We can treat it as offset 0.
if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy())
return true;
const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start);
// We need a SCEVAddExpr to include both base and offset.
if (!ASCEV)
return false;
// Make sure there is only one pointer operand(base) and all other operands
// are integer type.
bool SawPointer = false;
for (const SCEV *Op : ASCEV->operands()) {
if (Op->getType()->isPointerTy()) {
if (SawPointer)
return false;
SawPointer = true;
} else if (!Op->getType()->isIntegerTy())
return false;
}
return SawPointer;
};
// Check if the diff is a constant type. This is used for update/DS/DQ form
// preparation.
auto isValidConstantDiff = [](const SCEV *Diff) {
return dyn_cast<SCEVConstant>(Diff) != nullptr;
};
// Make sure the diff between the base and new candidate is required type.
// This is used for chain commoning preparation.
auto isValidChainCommoningDiff = [](const SCEV *Diff) {
assert(Diff && "Invalid Diff!\n");
// Don't mess up previous dform prepare.
if (isa<SCEVConstant>(Diff))
return false;
// A single integer type offset.
if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy())
return true;
const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff);
if (!ADiff)
return false;
for (const SCEV *Op : ADiff->operands())
if (!Op->getType()->isIntegerTy())
return false;
return true;
};
HasCandidateForPrepare = false;
LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n");
// Collect buckets of comparable addresses used by loads and stores for update
// form.
SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates(
L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm);
// Prepare for update form.
if (!UpdateFormBuckets.empty())
MadeChange |= updateFormPrep(L, UpdateFormBuckets);
else if (!HasCandidateForPrepare) {
LLVM_DEBUG(
dbgs()
<< "No prepare candidates found, stop praparation for current loop!\n");
// If no candidate for preparing, return early.
return MadeChange;
}
LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n");
// Collect buckets of comparable addresses used by loads and stores for DS
// form.
SmallVector<Bucket, 16> DSFormBuckets = collectCandidates(
L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm);
// Prepare for DS form.
if (!DSFormBuckets.empty())
MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm);
LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n");
// Collect buckets of comparable addresses used by loads and stores for DQ
// form.
SmallVector<Bucket, 16> DQFormBuckets = collectCandidates(
L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm);
// Prepare for DQ form.
if (!DQFormBuckets.empty())
MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm);
// Collect buckets of comparable addresses used by loads and stores for chain
// commoning. With chain commoning, we reuse offsets between the chains, so
// the register pressure will be reduced.
if (!EnableChainCommoning) {
LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n");
return MadeChange;
}
LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n");
SmallVector<Bucket, 16> Buckets =
collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff,
MaxVarsChainCommon);
// Prepare for chain commoning.
if (!Buckets.empty())
MadeChange |= chainCommoning(L, Buckets);
return MadeChange;
}