Files
clang-p2996/llvm/lib/Target/SPIRV/SPIRVUtils.cpp
Ilia Diachkov b8e1544b9d [SPIRV] add SPIRVPrepareFunctions pass and update other passes
The patch adds SPIRVPrepareFunctions pass, which modifies function
signatures containing aggregate arguments and/or return values before
IR translation. Information about the original signatures is stored in
metadata. It is used during call lowering to restore correct SPIR-V types
of function arguments and return values. This pass also substitutes some
llvm intrinsic calls to function calls, generating the necessary functions
in the module, as the SPIRV translator does.

The patch also includes changes in other modules, fixing errors and
enabling many SPIR-V features that were omitted earlier. And 15 LIT tests
are also added to demonstrate the new functionality.

Differential Revision: https://reviews.llvm.org/D129730

Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
2022-07-22 04:00:48 +03:00

239 lines
8.1 KiB
C++

//===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRVUtils.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVInstrInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
using namespace llvm;
// The following functions are used to add these string literals as a series of
// 32-bit integer operands with the correct format, and unpack them if necessary
// when making string comparisons in compiler passes.
// SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment.
static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) {
uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars.
for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) {
unsigned StrIndex = i + WordIndex;
uint8_t CharToAdd = 0; // Initilize char as padding/null.
if (StrIndex < Str.size()) { // If it's within the string, get a real char.
CharToAdd = Str[StrIndex];
}
Word |= (CharToAdd << (WordIndex * 8));
}
return Word;
}
// Get length including padding and null terminator.
static size_t getPaddedLen(const StringRef &Str) {
const size_t Len = Str.size() + 1;
return (Len % 4 == 0) ? Len : Len + (4 - (Len % 4));
}
void addStringImm(const StringRef &Str, MCInst &Inst) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
Inst.addOperand(MCOperand::createImm(convertCharsToWord(Str, i)));
}
}
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
MIB.addImm(convertCharsToWord(Str, i));
}
}
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add a vector element for the 32-bits of chars or padding.
Args.push_back(B.getInt32(convertCharsToWord(Str, i)));
}
}
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) {
return getSPIRVStringOperand(MI, StartIndex);
}
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) {
const auto Bitwidth = Imm.getBitWidth();
switch (Bitwidth) {
case 1:
break; // Already handled.
case 8:
case 16:
case 32:
MIB.addImm(Imm.getZExtValue());
break;
case 64: {
uint64_t FullImm = Imm.getZExtValue();
uint32_t LowBits = FullImm & 0xffffffff;
uint32_t HighBits = (FullImm >> 32) & 0xffffffff;
MIB.addImm(LowBits).addImm(HighBits);
break;
}
default:
report_fatal_error("Unsupported constant bitwidth");
}
}
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder) {
if (!Name.empty()) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpName).addUse(Target);
addStringImm(Name, MIB);
}
}
static void finishBuildOpDecorate(MachineInstrBuilder &MIB,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
if (!StrImm.empty())
addStringImm(StrImm, MIB);
for (const auto &DecArg : DecArgs)
MIB.addImm(DecArg);
}
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
llvm::SPIRV::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
llvm::SPIRV::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
MachineBasicBlock &MBB = *I.getParent();
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpDecorate))
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
// TODO: maybe the following two functions should be handled in the subtarget
// to allow for different OpenCL vs Vulkan handling.
unsigned storageClassToAddressSpace(SPIRV::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::Function:
return 0;
case SPIRV::StorageClass::CrossWorkgroup:
return 1;
case SPIRV::StorageClass::UniformConstant:
return 2;
case SPIRV::StorageClass::Workgroup:
return 3;
case SPIRV::StorageClass::Generic:
return 4;
case SPIRV::StorageClass::Input:
return 7;
default:
llvm_unreachable("Unable to get address space id");
}
}
SPIRV::StorageClass addressSpaceToStorageClass(unsigned AddrSpace) {
switch (AddrSpace) {
case 0:
return SPIRV::StorageClass::Function;
case 1:
return SPIRV::StorageClass::CrossWorkgroup;
case 2:
return SPIRV::StorageClass::UniformConstant;
case 3:
return SPIRV::StorageClass::Workgroup;
case 4:
return SPIRV::StorageClass::Generic;
case 7:
return SPIRV::StorageClass::Input;
default:
llvm_unreachable("Unknown address space");
}
}
SPIRV::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::StorageBuffer:
case SPIRV::StorageClass::Uniform:
return SPIRV::MemorySemantics::UniformMemory;
case SPIRV::StorageClass::Workgroup:
return SPIRV::MemorySemantics::WorkgroupMemory;
case SPIRV::StorageClass::CrossWorkgroup:
return SPIRV::MemorySemantics::CrossWorkgroupMemory;
case SPIRV::StorageClass::AtomicCounter:
return SPIRV::MemorySemantics::AtomicCounterMemory;
case SPIRV::StorageClass::Image:
return SPIRV::MemorySemantics::ImageMemory;
default:
return SPIRV::MemorySemantics::None;
}
}
SPIRV::MemorySemantics getMemSemantics(AtomicOrdering Ord) {
switch (Ord) {
case AtomicOrdering::Acquire:
return SPIRV::MemorySemantics::Acquire;
case AtomicOrdering::Release:
return SPIRV::MemorySemantics::Release;
case AtomicOrdering::AcquireRelease:
return SPIRV::MemorySemantics::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return SPIRV::MemorySemantics::SequentiallyConsistent;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::NotAtomic:
default:
return SPIRV::MemorySemantics::None;
}
}
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI) {
MachineInstr *ConstInstr = MRI->getVRegDef(ConstReg);
if (ConstInstr->getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS &&
ConstInstr->getIntrinsicID() == Intrinsic::spv_track_constant) {
ConstReg = ConstInstr->getOperand(2).getReg();
ConstInstr = MRI->getVRegDef(ConstReg);
} else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) {
ConstReg = ConstInstr->getOperand(1).getReg();
ConstInstr = MRI->getVRegDef(ConstReg);
}
return ConstInstr;
}
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) {
const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI);
assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT);
return MI->getOperand(1).getCImm()->getValue().getZExtValue();
}
bool isSpvIntrinsic(MachineInstr &MI, Intrinsic::ID IntrinsicID) {
return MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS &&
MI.getIntrinsicID() == IntrinsicID;
}
Type *getMDOperandAsType(const MDNode *N, unsigned I) {
return cast<ValueAsMetadata>(N->getOperand(I))->getType();
}