Files
clang-p2996/llvm/lib/Target/X86/X86MCInstLower.cpp
David Green 3e0bf1c7a9 [CodeGen] Move instruction predicate verification to emitInstruction
D25618 added a method to verify the instruction predicates for an
emitted instruction, through verifyInstructionPredicates added into
<Target>MCCodeEmitter::encodeInstruction. This is a very useful idea,
but the implementation inside MCCodeEmitter made it only fire for object
files, not assembly which most of the llvm test suite uses.

This patch moves the code into the <Target>_MC::verifyInstructionPredicates
method, inside the InstrInfo.  The allows it to be called from other
places, such as in this patch where it is called from the
<Target>AsmPrinter::emitInstruction methods which should trigger for
both assembly and object files. It can also be called from other places
such as verifyInstruction, but that is not done here (it tends to catch
errors earlier, but in reality just shows all the mir tests that have
incorrect feature predicates). The interface was also simplified
slightly, moving computeAvailableFeatures into the function so that it
does not need to be called externally.

The ARM, AMDGPU (but not R600), AVR, Mips and X86 backends all currently
show errors in the test-suite, so have been disabled with FIXME
comments.

Recommitted with some fixes for the leftover MCII variables in release
builds.

Differential Revision: https://reviews.llvm.org/D129506
2022-07-14 09:33:28 +01:00

2694 lines
99 KiB
C++

//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains code to lower X86 MachineInstrs to their corresponding
// MCInst records.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "MCTargetDesc/X86ShuffleDecode.h"
#include "MCTargetDesc/X86TargetStreamer.h"
#include "X86AsmPrinter.h"
#include "X86RegisterInfo.h"
#include "X86ShuffleDecodeConstantPool.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include <string>
using namespace llvm;
namespace {
/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
class X86MCInstLower {
MCContext &Ctx;
const MachineFunction &MF;
const TargetMachine &TM;
const MCAsmInfo &MAI;
X86AsmPrinter &AsmPrinter;
public:
X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
const MachineOperand &MO) const;
void Lower(const MachineInstr *MI, MCInst &OutMI) const;
MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
private:
MachineModuleInfoMachO &getMachOMMI() const;
};
} // end anonymous namespace
/// A RAII helper which defines a region of instructions which can't have
/// padding added between them for correctness.
struct NoAutoPaddingScope {
MCStreamer &OS;
const bool OldAllowAutoPadding;
NoAutoPaddingScope(MCStreamer &OS)
: OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
changeAndComment(false);
}
~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
void changeAndComment(bool b) {
if (b == OS.getAllowAutoPadding())
return;
OS.setAllowAutoPadding(b);
if (b)
OS.emitRawComment("autopadding");
else
OS.emitRawComment("noautopadding");
}
};
// Emit a minimal sequence of nops spanning NumBytes bytes.
static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
const X86Subtarget *Subtarget);
void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
const MCSubtargetInfo &STI,
MCCodeEmitter *CodeEmitter) {
if (InShadow) {
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
CurrentShadowSize += Code.size();
if (CurrentShadowSize >= RequiredShadowSize)
InShadow = false; // The shadow is big enough. Stop counting.
}
}
void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
if (InShadow && CurrentShadowSize < RequiredShadowSize) {
InShadow = false;
emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
&MF->getSubtarget<X86Subtarget>());
}
}
void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
OutStreamer->emitInstruction(Inst, getSubtargetInfo());
SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
}
X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
X86AsmPrinter &asmprinter)
: Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
AsmPrinter(asmprinter) {}
MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
}
/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
/// operand to an MCSymbol.
MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
const Triple &TT = TM.getTargetTriple();
if (MO.isGlobal() && TT.isOSBinFormatELF())
return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
const DataLayout &DL = MF.getDataLayout();
assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
"Isn't a symbol reference");
MCSymbol *Sym = nullptr;
SmallString<128> Name;
StringRef Suffix;
switch (MO.getTargetFlags()) {
case X86II::MO_DLLIMPORT:
// Handle dllimport linkage.
Name += "__imp_";
break;
case X86II::MO_COFFSTUB:
Name += ".refptr.";
break;
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
Suffix = "$non_lazy_ptr";
break;
}
if (!Suffix.empty())
Name += DL.getPrivateGlobalPrefix();
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
AsmPrinter.getNameWithPrefix(Name, GV);
} else if (MO.isSymbol()) {
Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
} else if (MO.isMBB()) {
assert(Suffix.empty());
Sym = MO.getMBB()->getSymbol();
}
Name += Suffix;
if (!Sym)
Sym = Ctx.getOrCreateSymbol(Name);
// If the target flags on the operand changes the name of the symbol, do that
// before we return the symbol.
switch (MO.getTargetFlags()) {
default:
break;
case X86II::MO_COFFSTUB: {
MachineModuleInfoCOFF &MMICOFF =
MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
if (!StubSym.getPointer()) {
assert(MO.isGlobal() && "Extern symbol not handled yet");
StubSym = MachineModuleInfoImpl::StubValueTy(
AsmPrinter.getSymbol(MO.getGlobal()), true);
}
break;
}
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
MachineModuleInfoImpl::StubValueTy &StubSym =
getMachOMMI().getGVStubEntry(Sym);
if (!StubSym.getPointer()) {
assert(MO.isGlobal() && "Extern symbol not handled yet");
StubSym = MachineModuleInfoImpl::StubValueTy(
AsmPrinter.getSymbol(MO.getGlobal()),
!MO.getGlobal()->hasInternalLinkage());
}
break;
}
}
return Sym;
}
MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
MCSymbol *Sym) const {
// FIXME: We would like an efficient form for this, so we don't have to do a
// lot of extra uniquing.
const MCExpr *Expr = nullptr;
MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
switch (MO.getTargetFlags()) {
default:
llvm_unreachable("Unknown target flag on GV operand");
case X86II::MO_NO_FLAG: // No flag.
// These affect the name of the symbol, not any suffix.
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DLLIMPORT:
case X86II::MO_COFFSTUB:
break;
case X86II::MO_TLVP:
RefKind = MCSymbolRefExpr::VK_TLVP;
break;
case X86II::MO_TLVP_PIC_BASE:
Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
// Subtract the pic base.
Expr = MCBinaryExpr::createSub(
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
break;
case X86II::MO_SECREL:
RefKind = MCSymbolRefExpr::VK_SECREL;
break;
case X86II::MO_TLSGD:
RefKind = MCSymbolRefExpr::VK_TLSGD;
break;
case X86II::MO_TLSLD:
RefKind = MCSymbolRefExpr::VK_TLSLD;
break;
case X86II::MO_TLSLDM:
RefKind = MCSymbolRefExpr::VK_TLSLDM;
break;
case X86II::MO_GOTTPOFF:
RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
break;
case X86II::MO_INDNTPOFF:
RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
break;
case X86II::MO_TPOFF:
RefKind = MCSymbolRefExpr::VK_TPOFF;
break;
case X86II::MO_DTPOFF:
RefKind = MCSymbolRefExpr::VK_DTPOFF;
break;
case X86II::MO_NTPOFF:
RefKind = MCSymbolRefExpr::VK_NTPOFF;
break;
case X86II::MO_GOTNTPOFF:
RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
break;
case X86II::MO_GOTPCREL:
RefKind = MCSymbolRefExpr::VK_GOTPCREL;
break;
case X86II::MO_GOTPCREL_NORELAX:
RefKind = MCSymbolRefExpr::VK_GOTPCREL_NORELAX;
break;
case X86II::MO_GOT:
RefKind = MCSymbolRefExpr::VK_GOT;
break;
case X86II::MO_GOTOFF:
RefKind = MCSymbolRefExpr::VK_GOTOFF;
break;
case X86II::MO_PLT:
RefKind = MCSymbolRefExpr::VK_PLT;
break;
case X86II::MO_ABS8:
RefKind = MCSymbolRefExpr::VK_X86_ABS8;
break;
case X86II::MO_PIC_BASE_OFFSET:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
Expr = MCSymbolRefExpr::create(Sym, Ctx);
// Subtract the pic base.
Expr = MCBinaryExpr::createSub(
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
if (MO.isJTI()) {
assert(MAI.doesSetDirectiveSuppressReloc());
// If .set directive is supported, use it to reduce the number of
// relocations the assembler will generate for differences between
// local labels. This is only safe when the symbols are in the same
// section so we are restricting it to jumptable references.
MCSymbol *Label = Ctx.createTempSymbol();
AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
Expr = MCSymbolRefExpr::create(Label, Ctx);
}
break;
}
if (!Expr)
Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
return MCOperand::createExpr(Expr);
}
/// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
/// a short fixed-register form.
static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
unsigned ImmOp = Inst.getNumOperands() - 1;
assert(Inst.getOperand(0).isReg() &&
(Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
Inst.getNumOperands() == 2) &&
"Unexpected instruction!");
// Check whether the destination register can be fixed.
unsigned Reg = Inst.getOperand(0).getReg();
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
return;
// If so, rewrite the instruction.
MCOperand Saved = Inst.getOperand(ImmOp);
Inst = MCInst();
Inst.setOpcode(Opcode);
Inst.addOperand(Saved);
}
/// If a movsx instruction has a shorter encoding for the used register
/// simplify the instruction to use it instead.
static void SimplifyMOVSX(MCInst &Inst) {
unsigned NewOpcode = 0;
unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Unexpected instruction!");
case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
if (Op0 == X86::AX && Op1 == X86::AL)
NewOpcode = X86::CBW;
break;
case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
if (Op0 == X86::EAX && Op1 == X86::AX)
NewOpcode = X86::CWDE;
break;
case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
if (Op0 == X86::RAX && Op1 == X86::EAX)
NewOpcode = X86::CDQE;
break;
}
if (NewOpcode != 0) {
Inst = MCInst();
Inst.setOpcode(NewOpcode);
}
}
/// Simplify things like MOV32rm to MOV32o32a.
static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
unsigned Opcode) {
// Don't make these simplifications in 64-bit mode; other assemblers don't
// perform them because they make the code larger.
if (Printer.getSubtarget().is64Bit())
return;
bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
unsigned AddrBase = IsStore;
unsigned RegOp = IsStore ? 0 : 5;
unsigned AddrOp = AddrBase + 3;
assert(
Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
(Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
"Unexpected instruction!");
// Check whether the destination register can be fixed.
unsigned Reg = Inst.getOperand(RegOp).getReg();
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
return;
// Check whether this is an absolute address.
// FIXME: We know TLVP symbol refs aren't, but there should be a better way
// to do this here.
bool Absolute = true;
if (Inst.getOperand(AddrOp).isExpr()) {
const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
Absolute = false;
}
if (Absolute &&
(Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
return;
// If so, rewrite the instruction.
MCOperand Saved = Inst.getOperand(AddrOp);
MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
Inst = MCInst();
Inst.setOpcode(Opcode);
Inst.addOperand(Saved);
Inst.addOperand(Seg);
}
static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
return Subtarget.is64Bit() ? X86::RET64 : X86::RET32;
}
Optional<MCOperand>
X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
const MachineOperand &MO) const {
switch (MO.getType()) {
default:
MI->print(errs());
llvm_unreachable("unknown operand type");
case MachineOperand::MO_Register:
// Ignore all implicit register operands.
if (MO.isImplicit())
return None;
return MCOperand::createReg(MO.getReg());
case MachineOperand::MO_Immediate:
return MCOperand::createImm(MO.getImm());
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
case MachineOperand::MO_MCSymbol:
return LowerSymbolOperand(MO, MO.getMCSymbol());
case MachineOperand::MO_JumpTableIndex:
return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
case MachineOperand::MO_ConstantPoolIndex:
return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
case MachineOperand::MO_BlockAddress:
return LowerSymbolOperand(
MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
case MachineOperand::MO_RegisterMask:
// Ignore call clobbers.
return None;
}
}
// Replace TAILJMP opcodes with their equivalent opcodes that have encoding
// information.
static unsigned convertTailJumpOpcode(unsigned Opcode) {
switch (Opcode) {
case X86::TAILJMPr:
Opcode = X86::JMP32r;
break;
case X86::TAILJMPm:
Opcode = X86::JMP32m;
break;
case X86::TAILJMPr64:
Opcode = X86::JMP64r;
break;
case X86::TAILJMPm64:
Opcode = X86::JMP64m;
break;
case X86::TAILJMPr64_REX:
Opcode = X86::JMP64r_REX;
break;
case X86::TAILJMPm64_REX:
Opcode = X86::JMP64m_REX;
break;
case X86::TAILJMPd:
case X86::TAILJMPd64:
Opcode = X86::JMP_1;
break;
case X86::TAILJMPd_CC:
case X86::TAILJMPd64_CC:
Opcode = X86::JCC_1;
break;
}
return Opcode;
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
OutMI.setOpcode(MI->getOpcode());
for (const MachineOperand &MO : MI->operands())
if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
OutMI.addOperand(*MaybeMCOp);
// Handle a few special cases to eliminate operand modifiers.
switch (OutMI.getOpcode()) {
case X86::LEA64_32r:
case X86::LEA64r:
case X86::LEA16r:
case X86::LEA32r:
// LEA should have a segment register, but it must be empty.
assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
"Unexpected # of LEA operands");
assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
"LEA has segment specified!");
break;
case X86::MULX32Hrr:
case X86::MULX32Hrm:
case X86::MULX64Hrr:
case X86::MULX64Hrm: {
// Turn into regular MULX by duplicating the destination.
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
}
OutMI.setOpcode(NewOpc);
// Duplicate the destination.
unsigned DestReg = OutMI.getOperand(0).getReg();
OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
break;
}
// Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
// if one of the registers is extended, but other isn't.
case X86::VMOVZPQILo2PQIrr:
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
OutMI.setOpcode(NewOpc);
}
break;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
OutMI.setOpcode(NewOpc);
}
break;
}
case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik:
case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik:
case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik:
case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik:
case X86::VPCMPBZrmi: case X86::VPCMPBZrmik:
case X86::VPCMPBZrri: case X86::VPCMPBZrrik:
case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik:
case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik:
case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik:
case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik:
case X86::VPCMPDZrmi: case X86::VPCMPDZrmik:
case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
case X86::VPCMPDZrri: case X86::VPCMPDZrrik:
case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik:
case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik:
case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik:
case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik:
case X86::VPCMPQZrmi: case X86::VPCMPQZrmik:
case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
case X86::VPCMPQZrri: case X86::VPCMPQZrrik:
case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik:
case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik:
case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik:
case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik:
case X86::VPCMPWZrmi: case X86::VPCMPWZrmik:
case X86::VPCMPWZrri: case X86::VPCMPWZrrik: {
// Turn immediate 0 into the VPCMPEQ instruction.
if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break;
}
OutMI.setOpcode(NewOpc);
OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
break;
}
// Turn immediate 6 into the VPCMPGT instruction.
if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break;
}
OutMI.setOpcode(NewOpc);
OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
break;
}
break;
}
// CALL64r, CALL64pcrel32 - These instructions used to have
// register inputs modeled as normal uses instead of implicit uses. As such,
// they we used to truncate off all but the first operand (the callee). This
// issue seems to have been fixed at some point. This assert verifies that.
case X86::CALL64r:
case X86::CALL64pcrel32:
assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
break;
case X86::EH_RETURN:
case X86::EH_RETURN64: {
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
break;
}
case X86::CLEANUPRET: {
// Replace CLEANUPRET with the appropriate RET.
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
break;
}
case X86::CATCHRET: {
// Replace CATCHRET with the appropriate RET.
const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(Subtarget));
OutMI.addOperand(MCOperand::createReg(ReturnReg));
break;
}
// TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
// instruction.
case X86::TAILJMPr:
case X86::TAILJMPr64:
case X86::TAILJMPr64_REX:
case X86::TAILJMPd:
case X86::TAILJMPd64:
assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::TAILJMPd_CC:
case X86::TAILJMPd64_CC:
assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::TAILJMPm:
case X86::TAILJMPm64:
case X86::TAILJMPm64_REX:
assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
"Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::DEC16r:
case X86::DEC32r:
case X86::INC16r:
case X86::INC32r:
// If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
if (!AsmPrinter.getSubtarget().is64Bit()) {
unsigned Opcode;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
case X86::INC16r: Opcode = X86::INC16r_alt; break;
case X86::INC32r: Opcode = X86::INC32r_alt; break;
}
OutMI.setOpcode(Opcode);
}
break;
// We don't currently select the correct instruction form for instructions
// which have a short %eax, etc. form. Handle this by custom lowering, for
// now.
//
// Note, we are currently not handling the following instructions:
// MOV64ao8, MOV64o8a
// XCHG16ar, XCHG32ar, XCHG64ar
case X86::MOV8mr_NOREX:
case X86::MOV8mr:
case X86::MOV8rm_NOREX:
case X86::MOV8rm:
case X86::MOV16mr:
case X86::MOV16rm:
case X86::MOV32mr:
case X86::MOV32rm: {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::MOV8mr_NOREX:
case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
case X86::MOV8rm_NOREX:
case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
}
SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
break;
}
case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
case X86::AND8ri: NewOpc = X86::AND8i8; break;
case X86::AND16ri: NewOpc = X86::AND16i16; break;
case X86::AND32ri: NewOpc = X86::AND32i32; break;
case X86::AND64ri32: NewOpc = X86::AND64i32; break;
case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
case X86::OR8ri: NewOpc = X86::OR8i8; break;
case X86::OR16ri: NewOpc = X86::OR16i16; break;
case X86::OR32ri: NewOpc = X86::OR32i32; break;
case X86::OR64ri32: NewOpc = X86::OR64i32; break;
case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
}
SimplifyShortImmForm(OutMI, NewOpc);
break;
}
// Try to shrink some forms of movsx.
case X86::MOVSX16rr8:
case X86::MOVSX32rr16:
case X86::MOVSX64rr32:
SimplifyMOVSX(OutMI);
break;
case X86::VCMPPDrri:
case X86::VCMPPDYrri:
case X86::VCMPPSrri:
case X86::VCMPPSYrri:
case X86::VCMPSDrr:
case X86::VCMPSSrr: {
// Swap the operands if it will enable a 2 byte VEX encoding.
// FIXME: Change the immediate to improve opportunities?
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
unsigned Imm = MI->getOperand(3).getImm() & 0x7;
switch (Imm) {
default: break;
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
break;
}
}
break;
}
case X86::VMOVHLPSrr:
case X86::VUNPCKHPDrr:
// These are not truly commutable so hide them from the default case.
break;
case X86::MASKMOVDQU:
case X86::VMASKMOVDQU:
if (AsmPrinter.getSubtarget().is64Bit())
OutMI.setFlags(X86::IP_HAS_AD_SIZE);
break;
default: {
// If the instruction is a commutable arithmetic instruction we might be
// able to commute the operands to get a 2 byte VEX prefix.
uint64_t TSFlags = MI->getDesc().TSFlags;
if (MI->getDesc().isCommutable() &&
(TSFlags & X86II::EncodingMask) == X86II::VEX &&
(TSFlags & X86II::OpMapMask) == X86II::TB &&
(TSFlags & X86II::FormMask) == X86II::MRMSrcReg &&
!(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) &&
OutMI.getNumOperands() == 3) {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg()))
std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
}
break;
}
}
}
void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
const MachineInstr &MI) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 &&
MI.getOpcode() != X86::TLS_base_addr32;
bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 ||
MI.getOpcode() == X86::TLS_base_addr64;
MCContext &Ctx = OutStreamer->getContext();
MCSymbolRefExpr::VariantKind SRVK;
switch (MI.getOpcode()) {
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_addrX32:
SRVK = MCSymbolRefExpr::VK_TLSGD;
break;
case X86::TLS_base_addr32:
SRVK = MCSymbolRefExpr::VK_TLSLDM;
break;
case X86::TLS_base_addr64:
case X86::TLS_base_addrX32:
SRVK = MCSymbolRefExpr::VK_TLSLD;
break;
default:
llvm_unreachable("unexpected opcode");
}
const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
// As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
// code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
// attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
// only using GOT when GOTPCRELX is enabled.
// TODO Delete the workaround when GOTPCRELX becomes commonplace.
bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
Ctx.getAsmInfo()->canRelaxRelocations();
if (Is64Bits) {
bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
if (NeedsPadding && Is64BitsLP64)
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
.addReg(X86::RDI)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addExpr(Sym)
.addReg(0));
const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
if (NeedsPadding) {
if (!UseGot)
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
}
if (UseGot) {
const MCExpr *Expr = MCSymbolRefExpr::create(
TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addExpr(Expr)
.addReg(0));
} else {
EmitAndCountInstruction(
MCInstBuilder(X86::CALL64pcrel32)
.addExpr(MCSymbolRefExpr::create(TlsGetAddr,
MCSymbolRefExpr::VK_PLT, Ctx)));
}
} else {
if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
.addReg(X86::EAX)
.addReg(0)
.addImm(1)
.addReg(X86::EBX)
.addExpr(Sym)
.addReg(0));
} else {
EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
.addReg(X86::EAX)
.addReg(X86::EBX)
.addImm(1)
.addReg(0)
.addExpr(Sym)
.addReg(0));
}
const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
if (UseGot) {
const MCExpr *Expr =
MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
.addReg(X86::EBX)
.addImm(1)
.addReg(0)
.addExpr(Expr)
.addReg(0));
} else {
EmitAndCountInstruction(
MCInstBuilder(X86::CALLpcrel32)
.addExpr(MCSymbolRefExpr::create(TlsGetAddr,
MCSymbolRefExpr::VK_PLT, Ctx)));
}
}
}
/// Emit the largest nop instruction smaller than or equal to \p NumBytes
/// bytes. Return the size of nop emitted.
static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
const X86Subtarget *Subtarget) {
// Determine the longest nop which can be efficiently decoded for the given
// target cpu. 15-bytes is the longest single NOP instruction, but some
// platforms can't decode the longest forms efficiently.
unsigned MaxNopLength = 1;
if (Subtarget->is64Bit()) {
// FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
// IndexReg/BaseReg below need to be updated.
if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
MaxNopLength = 7;
else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
MaxNopLength = 15;
else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
MaxNopLength = 11;
else
MaxNopLength = 10;
} if (Subtarget->is32Bit())
MaxNopLength = 2;
// Cap a single nop emission at the profitable value for the target
NumBytes = std::min(NumBytes, MaxNopLength);
unsigned NopSize;
unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
IndexReg = Displacement = SegmentReg = 0;
BaseReg = X86::RAX;
ScaleVal = 1;
switch (NumBytes) {
case 0:
llvm_unreachable("Zero nops?");
break;
case 1:
NopSize = 1;
Opc = X86::NOOP;
break;
case 2:
NopSize = 2;
Opc = X86::XCHG16ar;
break;
case 3:
NopSize = 3;
Opc = X86::NOOPL;
break;
case 4:
NopSize = 4;
Opc = X86::NOOPL;
Displacement = 8;
break;
case 5:
NopSize = 5;
Opc = X86::NOOPL;
Displacement = 8;
IndexReg = X86::RAX;
break;
case 6:
NopSize = 6;
Opc = X86::NOOPW;
Displacement = 8;
IndexReg = X86::RAX;
break;
case 7:
NopSize = 7;
Opc = X86::NOOPL;
Displacement = 512;
break;
case 8:
NopSize = 8;
Opc = X86::NOOPL;
Displacement = 512;
IndexReg = X86::RAX;
break;
case 9:
NopSize = 9;
Opc = X86::NOOPW;
Displacement = 512;
IndexReg = X86::RAX;
break;
default:
NopSize = 10;
Opc = X86::NOOPW;
Displacement = 512;
IndexReg = X86::RAX;
SegmentReg = X86::CS;
break;
}
unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
NopSize += NumPrefixes;
for (unsigned i = 0; i != NumPrefixes; ++i)
OS.emitBytes("\x66");
switch (Opc) {
default: llvm_unreachable("Unexpected opcode");
case X86::NOOP:
OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
break;
case X86::XCHG16ar:
OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
*Subtarget);
break;
case X86::NOOPL:
case X86::NOOPW:
OS.emitInstruction(MCInstBuilder(Opc)
.addReg(BaseReg)
.addImm(ScaleVal)
.addReg(IndexReg)
.addImm(Displacement)
.addReg(SegmentReg),
*Subtarget);
break;
}
assert(NopSize <= NumBytes && "We overemitted?");
return NopSize;
}
/// Emit the optimal amount of multi-byte nops on X86.
static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
const X86Subtarget *Subtarget) {
unsigned NopsToEmit = NumBytes;
(void)NopsToEmit;
while (NumBytes) {
NumBytes -= emitNop(OS, NumBytes, Subtarget);
assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
}
}
void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
StatepointOpers SOpers(&MI);
if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
} else {
// Lower call target and choose correct opcode
const MachineOperand &CallTarget = SOpers.getCallTarget();
MCOperand CallTargetMCOp;
unsigned CallOpcode;
switch (CallTarget.getType()) {
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
CallTargetMCOp = MCIL.LowerSymbolOperand(
CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
CallOpcode = X86::CALL64pcrel32;
// Currently, we only support relative addressing with statepoints.
// Otherwise, we'll need a scratch register to hold the target
// address. You'll fail asserts during load & relocation if this
// symbol is to far away. (TODO: support non-relative addressing)
break;
case MachineOperand::MO_Immediate:
CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
CallOpcode = X86::CALL64pcrel32;
// Currently, we only support relative addressing with statepoints.
// Otherwise, we'll need a scratch register to hold the target
// immediate. You'll fail asserts during load & relocation if this
// address is to far away. (TODO: support non-relative addressing)
break;
case MachineOperand::MO_Register:
// FIXME: Add retpoline support and remove this.
if (Subtarget->useIndirectThunkCalls())
report_fatal_error("Lowering register statepoints with thunks not "
"yet implemented.");
CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
CallOpcode = X86::CALL64r;
break;
default:
llvm_unreachable("Unsupported operand type in statepoint call target");
break;
}
// Emit call
MCInst CallInst;
CallInst.setOpcode(CallOpcode);
CallInst.addOperand(CallTargetMCOp);
OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
}
// Record our statepoint node in the same section used by STACKMAP
// and PATCHPOINT
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStatepoint(*MILabel, MI);
}
void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
X86MCInstLower &MCIL) {
// FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
// <opcode>, <operands>
NoAutoPaddingScope NoPadScope(*OutStreamer);
Register DefRegister = FaultingMI.getOperand(0).getReg();
FaultMaps::FaultKind FK =
static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
unsigned Opcode = FaultingMI.getOperand(3).getImm();
unsigned OperandsBeginIdx = 4;
auto &Ctx = OutStreamer->getContext();
MCSymbol *FaultingLabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(FaultingLabel);
assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
MCInst MI;
MI.setOpcode(Opcode);
if (DefRegister != X86::NoRegister)
MI.addOperand(MCOperand::createReg(DefRegister));
for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
E = FaultingMI.operands_end();
I != E; ++I)
if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
MI.addOperand(*MaybeOperand);
OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
OutStreamer->emitInstruction(MI, getSubtargetInfo());
}
void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
bool Is64Bits = Subtarget->is64Bit();
MCContext &Ctx = OutStreamer->getContext();
MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
const MCSymbolRefExpr *Op =
MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
EmitAndCountInstruction(
MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
.addExpr(Op));
}
void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
// FIXME: Make this work on non-ELF.
if (!TM.getTargetTriple().isOSBinFormatELF()) {
report_fatal_error("llvm.asan.check.memaccess only supported on ELF");
return;
}
const auto &Reg = MI.getOperand(0).getReg();
ASanAccessInfo AccessInfo(MI.getOperand(1).getImm());
uint64_t ShadowBase;
int MappingScale;
bool OrShadowOffset;
getAddressSanitizerParams(Triple(TM.getTargetTriple()), 64,
AccessInfo.CompileKernel, &ShadowBase,
&MappingScale, &OrShadowOffset);
StringRef Name = AccessInfo.IsWrite ? "store" : "load";
StringRef Op = OrShadowOffset ? "or" : "add";
std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" +
Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" +
TM.getMCRegisterInfo()->getName(Reg.asMCReg()))
.str();
if (OrShadowOffset)
report_fatal_error(
"OrShadowOffset is not supported with optimized callbacks");
EmitAndCountInstruction(
MCInstBuilder(X86::CALL64pcrel32)
.addExpr(MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol(SymName), OutContext)));
}
void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
X86MCInstLower &MCIL) {
// PATCHABLE_OP minsize, opcode, operands
NoAutoPaddingScope NoPadScope(*OutStreamer);
unsigned MinSize = MI.getOperand(0).getImm();
unsigned Opcode = MI.getOperand(1).getImm();
MCInst MCI;
MCI.setOpcode(Opcode);
for (auto &MO : drop_begin(MI.operands(), 2))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
MCI.addOperand(*MaybeOperand);
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
if (Code.size() < MinSize) {
if (MinSize == 2 && Subtarget->is32Bit() &&
Subtarget->isTargetWindowsMSVC() &&
(Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
// For compatibilty reasons, when targetting MSVC, is is important to
// generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
// rely specifically on this pattern to be able to patch a function.
// This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
OutStreamer->emitInstruction(
MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
*Subtarget);
} else if (MinSize == 2 && Opcode == X86::PUSH64r) {
// This is an optimization that lets us get away without emitting a nop in
// many cases.
//
// NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
// bytes too, so the check on MinSize is important.
MCI.setOpcode(X86::PUSH64rmr);
} else {
unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
assert(NopSize == MinSize && "Could not implement MinSize!");
(void)NopSize;
}
}
OutStreamer->emitInstruction(MCI, getSubtargetInfo());
}
// Lower a stackmap of the form:
// <id>, <shadowBytes>, ...
void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
unsigned NumShadowBytes = MI.getOperand(1).getImm();
SMShadowTracker.reset(NumShadowBytes);
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
NoAutoPaddingScope NoPadScope(*OutStreamer);
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers opers(&MI);
unsigned ScratchIdx = opers.getNextScratchIdx();
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = opers.getCallTarget();
// Check for null target. If target is non-null (i.e. is non-zero or is
// symbolic) then emit a call.
if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
MCOperand CalleeMCOp;
switch (CalleeMO.getType()) {
default:
/// FIXME: Add a verifier check for bad callee types.
llvm_unreachable("Unrecognized callee operand type.");
case MachineOperand::MO_Immediate:
if (CalleeMO.getImm())
CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
break;
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_GlobalAddress:
CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
MCIL.GetSymbolFromOperand(CalleeMO));
break;
}
// Emit MOV to materialize the target address and the CALL to target.
// This is encoded with 12-13 bytes, depending on which register is used.
Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
if (X86II::isX86_64ExtendedReg(ScratchReg))
EncodedBytes = 13;
else
EncodedBytes = 12;
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
// FIXME: Add retpoline support and remove this.
if (Subtarget->useIndirectThunkCalls())
report_fatal_error(
"Lowering patchpoint with thunks not yet implemented.");
EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
}
// Emit padding.
unsigned NumBytes = opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
}
void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
// We want to emit the following pattern, which follows the x86 calling
// convention to prepare for the trampoline call to be patched in.
//
// .p2align 1, ...
// .Lxray_event_sled_N:
// jmp +N // jump across the instrumentation sled
// ... // set up arguments in register
// callq __xray_CustomEvent@plt // force dependency to symbol
// ...
// <jump here>
//
// After patching, it would look something like:
//
// nopw (2-byte nop)
// ...
// callq __xrayCustomEvent // already lowered
// ...
//
// ---
// First we emit the label and the jump.
auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
OutStreamer->AddComment("# XRay Custom Event Log");
OutStreamer->emitCodeAlignment(2, &getSubtargetInfo());
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBinaryData("\xeb\x0f");
// The default C calling convention will place two arguments into %rcx and
// %rdx -- so we only work with those.
const Register DestRegs[] = {X86::RDI, X86::RSI};
bool UsedMask[] = {false, false};
// Filled out in loop.
Register SrcRegs[] = {0, 0};
// Then we put the operands in the %rdi and %rsi registers. We spill the
// values in the register before we clobber them, and mark them as used in
// UsedMask. In case the arguments are already in the correct register, we use
// emit nops appropriately sized to keep the sled the same size in every
// situation.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
assert(Op->isReg() && "Only support arguments in registers");
SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
if (SrcRegs[I] != DestRegs[I]) {
UsedMask[I] = true;
EmitAndCountInstruction(
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
} else {
emitX86Nops(*OutStreamer, 4, Subtarget);
}
}
// Now that the register values are stashed, mov arguments into place.
// FIXME: This doesn't work if one of the later SrcRegs is equal to an
// earlier DestReg. We will have already overwritten over the register before
// we can copy from it.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (SrcRegs[I] != DestRegs[I])
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
// We emit a hard dependency on the __xray_CustomEvent symbol, which is the
// name of the trampoline to be implemented by the XRay runtime.
auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
if (isPositionIndependent())
TOp.setTargetFlags(X86II::MO_PLT);
// Emit the call instruction.
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
// Restore caller-saved and used registers.
for (unsigned I = sizeof UsedMask; I-- > 0;)
if (UsedMask[I])
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
else
emitX86Nops(*OutStreamer, 1, Subtarget);
OutStreamer->AddComment("xray custom event end.");
// Record the sled version. Version 0 of this sled was spelled differently, so
// we let the runtime handle the different offsets we're using. Version 2
// changed the absolute address to a PC-relative address.
recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
}
void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
// We want to emit the following pattern, which follows the x86 calling
// convention to prepare for the trampoline call to be patched in.
//
// .p2align 1, ...
// .Lxray_event_sled_N:
// jmp +N // jump across the instrumentation sled
// ... // set up arguments in register
// callq __xray_TypedEvent@plt // force dependency to symbol
// ...
// <jump here>
//
// After patching, it would look something like:
//
// nopw (2-byte nop)
// ...
// callq __xrayTypedEvent // already lowered
// ...
//
// ---
// First we emit the label and the jump.
auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
OutStreamer->AddComment("# XRay Typed Event Log");
OutStreamer->emitCodeAlignment(2, &getSubtargetInfo());
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBinaryData("\xeb\x14");
// An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
// so we'll work with those. Or we may be called via SystemV, in which case
// we don't have to do any translation.
const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
bool UsedMask[] = {false, false, false};
// Will fill out src regs in the loop.
Register SrcRegs[] = {0, 0, 0};
// Then we put the operands in the SystemV registers. We spill the values in
// the registers before we clobber them, and mark them as used in UsedMask.
// In case the arguments are already in the correct register, we emit nops
// appropriately sized to keep the sled the same size in every situation.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
// TODO: Is register only support adequate?
assert(Op->isReg() && "Only supports arguments in registers");
SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
if (SrcRegs[I] != DestRegs[I]) {
UsedMask[I] = true;
EmitAndCountInstruction(
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
} else {
emitX86Nops(*OutStreamer, 4, Subtarget);
}
}
// In the above loop we only stash all of the destination registers or emit
// nops if the arguments are already in the right place. Doing the actually
// moving is postponed until after all the registers are stashed so nothing
// is clobbers. We've already added nops to account for the size of mov and
// push if the register is in the right place, so we only have to worry about
// emitting movs.
// FIXME: This doesn't work if one of the later SrcRegs is equal to an
// earlier DestReg. We will have already overwritten over the register before
// we can copy from it.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (UsedMask[I])
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
// We emit a hard dependency on the __xray_TypedEvent symbol, which is the
// name of the trampoline to be implemented by the XRay runtime.
auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
if (isPositionIndependent())
TOp.setTargetFlags(X86II::MO_PLT);
// Emit the call instruction.
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
// Restore caller-saved and used registers.
for (unsigned I = sizeof UsedMask; I-- > 0;)
if (UsedMask[I])
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
else
emitX86Nops(*OutStreamer, 1, Subtarget);
OutStreamer->AddComment("xray typed event end.");
// Record the sled version.
recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
}
void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
const Function &F = MF->getFunction();
if (F.hasFnAttribute("patchable-function-entry")) {
unsigned Num;
if (F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, Num))
return;
emitX86Nops(*OutStreamer, Num, Subtarget);
return;
}
// We want to emit the following pattern:
//
// .p2align 1, ...
// .Lxray_sled_N:
// jmp .tmpN
// # 9 bytes worth of noops
//
// We need the 9 bytes because at runtime, we'd be patching over the full 11
// bytes with the following pattern:
//
// mov %r10, <function id, 32-bit> // 6 bytes
// call <relative offset, 32-bits> // 5 bytes
//
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2, &getSubtargetInfo());
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBytes("\xeb\x09");
emitX86Nops(*OutStreamer, 9, Subtarget);
recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2);
}
void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
// Since PATCHABLE_RET takes the opcode of the return statement as an
// argument, we use that to emit the correct form of the RET that we want.
// i.e. when we see this:
//
// PATCHABLE_RET X86::RET ...
//
// We should emit the RET followed by sleds.
//
// .p2align 1, ...
// .Lxray_sled_N:
// ret # or equivalent instruction
// # 10 bytes worth of noops
//
// This just makes sure that the alignment for the next instruction is 2.
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2, &getSubtargetInfo());
OutStreamer->emitLabel(CurSled);
unsigned OpCode = MI.getOperand(0).getImm();
MCInst Ret;
Ret.setOpcode(OpCode);
for (auto &MO : drop_begin(MI.operands()))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
Ret.addOperand(*MaybeOperand);
OutStreamer->emitInstruction(Ret, getSubtargetInfo());
emitX86Nops(*OutStreamer, 10, Subtarget);
recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2);
}
void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
// Like PATCHABLE_RET, we have the actual instruction in the operands to this
// instruction so we lower that particular instruction and its operands.
// Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
// we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
// the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
// tail call much like how we have it in PATCHABLE_RET.
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2, &getSubtargetInfo());
OutStreamer->emitLabel(CurSled);
auto Target = OutContext.createTempSymbol();
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBytes("\xeb\x09");
emitX86Nops(*OutStreamer, 9, Subtarget);
OutStreamer->emitLabel(Target);
recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
unsigned OpCode = MI.getOperand(0).getImm();
OpCode = convertTailJumpOpcode(OpCode);
MCInst TC;
TC.setOpcode(OpCode);
// Before emitting the instruction, add a comment to indicate that this is
// indeed a tail call.
OutStreamer->AddComment("TAILCALL");
for (auto &MO : drop_begin(MI.operands()))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
TC.addOperand(*MaybeOperand);
OutStreamer->emitInstruction(TC, getSubtargetInfo());
}
// Returns instruction preceding MBBI in MachineFunction.
// If MBBI is the first instruction of the first basic block, returns null.
static MachineBasicBlock::const_iterator
PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
const MachineBasicBlock *MBB = MBBI->getParent();
while (MBBI == MBB->begin()) {
if (MBB == &MBB->getParent()->front())
return MachineBasicBlock::const_iterator();
MBB = MBB->getPrevNode();
MBBI = MBB->end();
}
--MBBI;
return MBBI;
}
static const Constant *getConstantFromPool(const MachineInstr &MI,
const MachineOperand &Op) {
if (!Op.isCPI() || Op.getOffset() != 0)
return nullptr;
ArrayRef<MachineConstantPoolEntry> Constants =
MI.getParent()->getParent()->getConstantPool()->getConstants();
const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
// Bail if this is a machine constant pool entry, we won't be able to dig out
// anything useful.
if (ConstantEntry.isMachineConstantPoolEntry())
return nullptr;
return ConstantEntry.Val.ConstVal;
}
static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
unsigned SrcOp2Idx, ArrayRef<int> Mask) {
std::string Comment;
// Compute the name for a register. This is really goofy because we have
// multiple instruction printers that could (in theory) use different
// names. Fortunately most people use the ATT style (outside of Windows)
// and they actually agree on register naming here. Ultimately, this is
// a comment, and so its OK if it isn't perfect.
auto GetRegisterName = [](unsigned RegNum) -> StringRef {
return X86ATTInstPrinter::getRegisterName(RegNum);
};
const MachineOperand &DstOp = MI->getOperand(0);
const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
StringRef Src1Name =
SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
StringRef Src2Name =
SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
// One source operand, fix the mask to print all elements in one span.
SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
if (Src1Name == Src2Name)
for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
if (ShuffleMask[i] >= e)
ShuffleMask[i] -= e;
raw_string_ostream CS(Comment);
CS << DstName;
// Handle AVX512 MASK/MASXZ write mask comments.
// MASK: zmmX {%kY}
// MASKZ: zmmX {%kY} {z}
if (SrcOp1Idx > 1) {
assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
if (WriteMaskOp.isReg()) {
CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
if (SrcOp1Idx == 2) {
CS << " {z}";
}
}
}
CS << " = ";
for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
if (i != 0)
CS << ",";
if (ShuffleMask[i] == SM_SentinelZero) {
CS << "zero";
continue;
}
// Otherwise, it must come from src1 or src2. Print the span of elements
// that comes from this src.
bool isSrc1 = ShuffleMask[i] < (int)e;
CS << (isSrc1 ? Src1Name : Src2Name) << '[';
bool IsFirst = true;
while (i != e && ShuffleMask[i] != SM_SentinelZero &&
(ShuffleMask[i] < (int)e) == isSrc1) {
if (!IsFirst)
CS << ',';
else
IsFirst = false;
if (ShuffleMask[i] == SM_SentinelUndef)
CS << "u";
else
CS << ShuffleMask[i] % (int)e;
++i;
}
CS << ']';
--i; // For loop increments element #.
}
CS.flush();
return Comment;
}
static void printConstant(const APInt &Val, raw_ostream &CS) {
if (Val.getBitWidth() <= 64) {
CS << Val.getZExtValue();
} else {
// print multi-word constant as (w0,w1)
CS << "(";
for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
if (i > 0)
CS << ",";
CS << Val.getRawData()[i];
}
CS << ")";
}
}
static void printConstant(const APFloat &Flt, raw_ostream &CS) {
SmallString<32> Str;
// Force scientific notation to distinquish from integers.
Flt.toString(Str, 0, 0);
CS << Str;
}
static void printConstant(const Constant *COp, raw_ostream &CS) {
if (isa<UndefValue>(COp)) {
CS << "u";
} else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
printConstant(CI->getValue(), CS);
} else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
printConstant(CF->getValueAPF(), CS);
} else {
CS << "?";
}
}
void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
// Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
if (EmitFPOData) {
X86TargetStreamer *XTS =
static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
switch (MI->getOpcode()) {
case X86::SEH_PushReg:
XTS->emitFPOPushReg(MI->getOperand(0).getImm());
break;
case X86::SEH_StackAlloc:
XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
break;
case X86::SEH_StackAlign:
XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
break;
case X86::SEH_SetFrame:
assert(MI->getOperand(1).getImm() == 0 &&
".cv_fpo_setframe takes no offset");
XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
break;
case X86::SEH_EndPrologue:
XTS->emitFPOEndPrologue();
break;
case X86::SEH_SaveReg:
case X86::SEH_SaveXMM:
case X86::SEH_PushFrame:
llvm_unreachable("SEH_ directive incompatible with FPO");
break;
default:
llvm_unreachable("expected SEH_ instruction");
}
return;
}
// Otherwise, use the .seh_ directives for all other Windows platforms.
switch (MI->getOpcode()) {
case X86::SEH_PushReg:
OutStreamer->emitWinCFIPushReg(MI->getOperand(0).getImm());
break;
case X86::SEH_SaveReg:
OutStreamer->emitWinCFISaveReg(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_SaveXMM:
OutStreamer->emitWinCFISaveXMM(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_StackAlloc:
OutStreamer->emitWinCFIAllocStack(MI->getOperand(0).getImm());
break;
case X86::SEH_SetFrame:
OutStreamer->emitWinCFISetFrame(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_PushFrame:
OutStreamer->emitWinCFIPushFrame(MI->getOperand(0).getImm());
break;
case X86::SEH_EndPrologue:
OutStreamer->emitWinCFIEndProlog();
break;
default:
llvm_unreachable("expected SEH_ instruction");
}
}
static unsigned getRegisterWidth(const MCOperandInfo &Info) {
if (Info.RegClass == X86::VR128RegClassID ||
Info.RegClass == X86::VR128XRegClassID)
return 128;
if (Info.RegClass == X86::VR256RegClassID ||
Info.RegClass == X86::VR256XRegClassID)
return 256;
if (Info.RegClass == X86::VR512RegClassID)
return 512;
llvm_unreachable("Unknown register class!");
}
static void addConstantComments(const MachineInstr *MI,
MCStreamer &OutStreamer) {
switch (MI->getOpcode()) {
// Lower PSHUFB and VPERMILP normally but add a comment if we can find
// a constant shuffle mask. We won't be able to do this at the MC layer
// because the mask isn't an immediate.
case X86::PSHUFBrm:
case X86::VPSHUFBrm:
case X86::VPSHUFBYrm:
case X86::VPSHUFBZ128rm:
case X86::VPSHUFBZ128rmk:
case X86::VPSHUFBZ128rmkz:
case X86::VPSHUFBZ256rm:
case X86::VPSHUFBZ256rmk:
case X86::VPSHUFBZ256rmkz:
case X86::VPSHUFBZrm:
case X86::VPSHUFBZrmk:
case X86::VPSHUFBZrmkz: {
unsigned SrcIdx = 1;
if (X86II::isKMasked(MI->getDesc().TSFlags)) {
// Skip mask operand.
++SrcIdx;
if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
// Skip passthru operand.
++SrcIdx;
}
}
unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 64> Mask;
DecodePSHUFBMask(C, Width, Mask);
if (!Mask.empty())
OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
}
break;
}
case X86::VPERMILPSrm:
case X86::VPERMILPSYrm:
case X86::VPERMILPSZ128rm:
case X86::VPERMILPSZ128rmk:
case X86::VPERMILPSZ128rmkz:
case X86::VPERMILPSZ256rm:
case X86::VPERMILPSZ256rmk:
case X86::VPERMILPSZ256rmkz:
case X86::VPERMILPSZrm:
case X86::VPERMILPSZrmk:
case X86::VPERMILPSZrmkz:
case X86::VPERMILPDrm:
case X86::VPERMILPDYrm:
case X86::VPERMILPDZ128rm:
case X86::VPERMILPDZ128rmk:
case X86::VPERMILPDZ128rmkz:
case X86::VPERMILPDZ256rm:
case X86::VPERMILPDZ256rmk:
case X86::VPERMILPDZ256rmkz:
case X86::VPERMILPDZrm:
case X86::VPERMILPDZrmk:
case X86::VPERMILPDZrmkz: {
unsigned ElSize;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPERMILPSrm:
case X86::VPERMILPSYrm:
case X86::VPERMILPSZ128rm:
case X86::VPERMILPSZ256rm:
case X86::VPERMILPSZrm:
case X86::VPERMILPSZ128rmkz:
case X86::VPERMILPSZ256rmkz:
case X86::VPERMILPSZrmkz:
case X86::VPERMILPSZ128rmk:
case X86::VPERMILPSZ256rmk:
case X86::VPERMILPSZrmk:
ElSize = 32;
break;
case X86::VPERMILPDrm:
case X86::VPERMILPDYrm:
case X86::VPERMILPDZ128rm:
case X86::VPERMILPDZ256rm:
case X86::VPERMILPDZrm:
case X86::VPERMILPDZ128rmkz:
case X86::VPERMILPDZ256rmkz:
case X86::VPERMILPDZrmkz:
case X86::VPERMILPDZ128rmk:
case X86::VPERMILPDZ256rmk:
case X86::VPERMILPDZrmk:
ElSize = 64;
break;
}
unsigned SrcIdx = 1;
if (X86II::isKMasked(MI->getDesc().TSFlags)) {
// Skip mask operand.
++SrcIdx;
if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
// Skip passthru operand.
++SrcIdx;
}
}
unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPERMILPMask(C, ElSize, Width, Mask);
if (!Mask.empty())
OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
}
break;
}
case X86::VPERMIL2PDrm:
case X86::VPERMIL2PSrm:
case X86::VPERMIL2PDYrm:
case X86::VPERMIL2PSYrm: {
assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
"Unexpected number of operands!");
const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
if (!CtrlOp.isImm())
break;
unsigned ElSize;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
}
const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
if (!Mask.empty())
OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
}
break;
}
case X86::VPPERMrrm: {
assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPPERMMask(C, Width, Mask);
if (!Mask.empty())
OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
}
break;
}
case X86::MMX_MOVQ64rm: {
assert(MI->getNumOperands() == (1 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
if (auto *CF = dyn_cast<ConstantFP>(C)) {
CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
OutStreamer.AddComment(CS.str());
}
}
break;
}
#define MOV_CASE(Prefix, Suffix) \
case X86::Prefix##MOVAPD##Suffix##rm: \
case X86::Prefix##MOVAPS##Suffix##rm: \
case X86::Prefix##MOVUPD##Suffix##rm: \
case X86::Prefix##MOVUPS##Suffix##rm: \
case X86::Prefix##MOVDQA##Suffix##rm: \
case X86::Prefix##MOVDQU##Suffix##rm:
#define MOV_AVX512_CASE(Suffix) \
case X86::VMOVDQA64##Suffix##rm: \
case X86::VMOVDQA32##Suffix##rm: \
case X86::VMOVDQU64##Suffix##rm: \
case X86::VMOVDQU32##Suffix##rm: \
case X86::VMOVDQU16##Suffix##rm: \
case X86::VMOVDQU8##Suffix##rm: \
case X86::VMOVAPS##Suffix##rm: \
case X86::VMOVAPD##Suffix##rm: \
case X86::VMOVUPS##Suffix##rm: \
case X86::VMOVUPD##Suffix##rm:
#define CASE_ALL_MOV_RM() \
MOV_CASE(, ) /* SSE */ \
MOV_CASE(V, ) /* AVX-128 */ \
MOV_CASE(V, Y) /* AVX-256 */ \
MOV_AVX512_CASE(Z) \
MOV_AVX512_CASE(Z256) \
MOV_AVX512_CASE(Z128)
// For loads from a constant pool to a vector register, print the constant
// loaded.
CASE_ALL_MOV_RM()
case X86::VBROADCASTF128:
case X86::VBROADCASTI128:
case X86::VBROADCASTF32X4Z256rm:
case X86::VBROADCASTF32X4rm:
case X86::VBROADCASTF32X8rm:
case X86::VBROADCASTF64X2Z128rm:
case X86::VBROADCASTF64X2rm:
case X86::VBROADCASTF64X4rm:
case X86::VBROADCASTI32X4Z256rm:
case X86::VBROADCASTI32X4rm:
case X86::VBROADCASTI32X8rm:
case X86::VBROADCASTI64X2Z128rm:
case X86::VBROADCASTI64X2rm:
case X86::VBROADCASTI64X4rm:
assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
int NumLanes = 1;
// Override NumLanes for the broadcast instructions.
switch (MI->getOpcode()) {
case X86::VBROADCASTF128: NumLanes = 2; break;
case X86::VBROADCASTI128: NumLanes = 2; break;
case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
}
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
CS << "[";
for (int l = 0; l != NumLanes; ++l) {
for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
++i) {
if (i != 0 || l != 0)
CS << ",";
if (CDS->getElementType()->isIntegerTy())
printConstant(CDS->getElementAsAPInt(i), CS);
else if (CDS->getElementType()->isHalfTy() ||
CDS->getElementType()->isFloatTy() ||
CDS->getElementType()->isDoubleTy())
printConstant(CDS->getElementAsAPFloat(i), CS);
else
CS << "?";
}
}
CS << "]";
OutStreamer.AddComment(CS.str());
} else if (auto *CV = dyn_cast<ConstantVector>(C)) {
CS << "<";
for (int l = 0; l != NumLanes; ++l) {
for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
++i) {
if (i != 0 || l != 0)
CS << ",";
printConstant(CV->getOperand(i), CS);
}
}
CS << ">";
OutStreamer.AddComment(CS.str());
}
}
break;
case X86::MOVDDUPrm:
case X86::VMOVDDUPrm:
case X86::VMOVDDUPZ128rm:
case X86::VBROADCASTSSrm:
case X86::VBROADCASTSSYrm:
case X86::VBROADCASTSSZ128rm:
case X86::VBROADCASTSSZ256rm:
case X86::VBROADCASTSSZrm:
case X86::VBROADCASTSDYrm:
case X86::VBROADCASTSDZ256rm:
case X86::VBROADCASTSDZrm:
case X86::VPBROADCASTBrm:
case X86::VPBROADCASTBYrm:
case X86::VPBROADCASTBZ128rm:
case X86::VPBROADCASTBZ256rm:
case X86::VPBROADCASTBZrm:
case X86::VPBROADCASTDrm:
case X86::VPBROADCASTDYrm:
case X86::VPBROADCASTDZ128rm:
case X86::VPBROADCASTDZ256rm:
case X86::VPBROADCASTDZrm:
case X86::VPBROADCASTQrm:
case X86::VPBROADCASTQYrm:
case X86::VPBROADCASTQZ128rm:
case X86::VPBROADCASTQZ256rm:
case X86::VPBROADCASTQZrm:
case X86::VPBROADCASTWrm:
case X86::VPBROADCASTWYrm:
case X86::VPBROADCASTWZ128rm:
case X86::VPBROADCASTWZ256rm:
case X86::VPBROADCASTWZrm:
assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
"Unexpected number of operands!");
if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
int NumElts;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::MOVDDUPrm: NumElts = 2; break;
case X86::VMOVDDUPrm: NumElts = 2; break;
case X86::VMOVDDUPZ128rm: NumElts = 2; break;
case X86::VBROADCASTSSrm: NumElts = 4; break;
case X86::VBROADCASTSSYrm: NumElts = 8; break;
case X86::VBROADCASTSSZ128rm: NumElts = 4; break;
case X86::VBROADCASTSSZ256rm: NumElts = 8; break;
case X86::VBROADCASTSSZrm: NumElts = 16; break;
case X86::VBROADCASTSDYrm: NumElts = 4; break;
case X86::VBROADCASTSDZ256rm: NumElts = 4; break;
case X86::VBROADCASTSDZrm: NumElts = 8; break;
case X86::VPBROADCASTBrm: NumElts = 16; break;
case X86::VPBROADCASTBYrm: NumElts = 32; break;
case X86::VPBROADCASTBZ128rm: NumElts = 16; break;
case X86::VPBROADCASTBZ256rm: NumElts = 32; break;
case X86::VPBROADCASTBZrm: NumElts = 64; break;
case X86::VPBROADCASTDrm: NumElts = 4; break;
case X86::VPBROADCASTDYrm: NumElts = 8; break;
case X86::VPBROADCASTDZ128rm: NumElts = 4; break;
case X86::VPBROADCASTDZ256rm: NumElts = 8; break;
case X86::VPBROADCASTDZrm: NumElts = 16; break;
case X86::VPBROADCASTQrm: NumElts = 2; break;
case X86::VPBROADCASTQYrm: NumElts = 4; break;
case X86::VPBROADCASTQZ128rm: NumElts = 2; break;
case X86::VPBROADCASTQZ256rm: NumElts = 4; break;
case X86::VPBROADCASTQZrm: NumElts = 8; break;
case X86::VPBROADCASTWrm: NumElts = 8; break;
case X86::VPBROADCASTWYrm: NumElts = 16; break;
case X86::VPBROADCASTWZ128rm: NumElts = 8; break;
case X86::VPBROADCASTWZ256rm: NumElts = 16; break;
case X86::VPBROADCASTWZrm: NumElts = 32; break;
}
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
CS << "[";
for (int i = 0; i != NumElts; ++i) {
if (i != 0)
CS << ",";
printConstant(C, CS);
}
CS << "]";
OutStreamer.AddComment(CS.str());
}
}
}
void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
// FIXME: Enable feature predicate checks once all the test pass.
// X86_MC::verifyInstructionPredicates(MI->getOpcode(),
// Subtarget->getFeatureBits());
X86MCInstLower MCInstLowering(*MF, *this);
const X86RegisterInfo *RI =
MF->getSubtarget<X86Subtarget>().getRegisterInfo();
if (MI->getOpcode() == X86::OR64rm) {
for (auto &Opd : MI->operands()) {
if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) ==
"swift_async_extendedFramePointerFlags") {
ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true;
}
}
}
// Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
// are compressed from EVEX encoding to VEX encoding.
if (TM.Options.MCOptions.ShowMCEncoding) {
if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
OutStreamer->AddComment("EVEX TO VEX Compression ", false);
}
// Add comments for values loaded from constant pool.
if (OutStreamer->isVerboseAsm())
addConstantComments(MI, *OutStreamer);
switch (MI->getOpcode()) {
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
// Emit nothing here but a comment if we can.
case X86::Int_MemBarrier:
OutStreamer->emitRawComment("MEMBARRIER");
return;
case X86::EH_RETURN:
case X86::EH_RETURN64: {
// Lower these as normal, but add some comments.
Register Reg = MI->getOperand(0).getReg();
OutStreamer->AddComment(StringRef("eh_return, addr: %") +
X86ATTInstPrinter::getRegisterName(Reg));
break;
}
case X86::CLEANUPRET: {
// Lower these as normal, but add some comments.
OutStreamer->AddComment("CLEANUPRET");
break;
}
case X86::CATCHRET: {
// Lower these as normal, but add some comments.
OutStreamer->AddComment("CATCHRET");
break;
}
case X86::ENDBR32:
case X86::ENDBR64: {
// CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
// -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
// non-empty. If MI is the initial ENDBR, place the
// __patchable_function_entries label after ENDBR.
if (CurrentPatchableFunctionEntrySym &&
CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
MI == &MF->front().front()) {
MCInst Inst;
MCInstLowering.Lower(MI, Inst);
EmitAndCountInstruction(Inst);
CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
return;
}
break;
}
case X86::TAILJMPr:
case X86::TAILJMPm:
case X86::TAILJMPd:
case X86::TAILJMPd_CC:
case X86::TAILJMPr64:
case X86::TAILJMPm64:
case X86::TAILJMPd64:
case X86::TAILJMPd64_CC:
case X86::TAILJMPr64_REX:
case X86::TAILJMPm64_REX:
// Lower these as normal, but add some comments.
OutStreamer->AddComment("TAILCALL");
break;
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_addrX32:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
case X86::TLS_base_addrX32:
return LowerTlsAddr(MCInstLowering, *MI);
case X86::MOVPC32r: {
// This is a pseudo op for a two instruction sequence with a label, which
// looks like:
// call "L1$pb"
// "L1$pb":
// popl %esi
// Emit the call.
MCSymbol *PICBase = MF->getPICBaseSymbol();
// FIXME: We would like an efficient form for this, so we don't have to do a
// lot of extra uniquing.
EmitAndCountInstruction(
MCInstBuilder(X86::CALLpcrel32)
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
const X86FrameLowering *FrameLowering =
MF->getSubtarget<X86Subtarget>().getFrameLowering();
bool hasFP = FrameLowering->hasFP(*MF);
// TODO: This is needed only if we require precise CFA.
bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
!OutStreamer->getDwarfFrameInfos().back().End;
int stackGrowth = -RI->getSlotSize();
if (HasActiveDwarfFrame && !hasFP) {
OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
}
// Emit the label.
OutStreamer->emitLabel(PICBase);
// popl $reg
EmitAndCountInstruction(
MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
if (HasActiveDwarfFrame && !hasFP) {
OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
}
return;
}
case X86::ADD32ri: {
// Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
break;
// Okay, we have something like:
// EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
// For this, we want to print something like:
// MYGLOBAL + (. - PICBASE)
// However, we can't generate a ".", so just emit a new label here and refer
// to it.
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
// Now that we have emitted the label, lower the complex operand expression.
MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCExpr *PICBase =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
DotExpr = MCBinaryExpr::createAdd(
MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(DotExpr));
return;
}
case TargetOpcode::STATEPOINT:
return LowerSTATEPOINT(*MI, MCInstLowering);
case TargetOpcode::FAULTING_OP:
return LowerFAULTING_OP(*MI, MCInstLowering);
case TargetOpcode::FENTRY_CALL:
return LowerFENTRY_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_OP:
return LowerPATCHABLE_OP(*MI, MCInstLowering);
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(*MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_RET:
return LowerPATCHABLE_RET(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_TAIL_CALL:
return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_EVENT_CALL:
return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
case X86::MORESTACK_RET:
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
return;
case X86::ASAN_CHECK_MEMACCESS:
return LowerASAN_CHECK_MEMACCESS(*MI);
case X86::MORESTACK_RET_RESTORE_R10:
// Return, then restore R10.
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
return;
case X86::SEH_PushReg:
case X86::SEH_SaveReg:
case X86::SEH_SaveXMM:
case X86::SEH_StackAlloc:
case X86::SEH_StackAlign:
case X86::SEH_SetFrame:
case X86::SEH_PushFrame:
case X86::SEH_EndPrologue:
EmitSEHInstruction(MI);
return;
case X86::SEH_Epilogue: {
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
MachineBasicBlock::const_iterator MBBI(MI);
// Check if preceded by a call and emit nop if so.
for (MBBI = PrevCrossBBInst(MBBI);
MBBI != MachineBasicBlock::const_iterator();
MBBI = PrevCrossBBInst(MBBI)) {
// Conservatively assume that pseudo instructions don't emit code and keep
// looking for a call. We may emit an unnecessary nop in some cases.
if (!MBBI->isPseudo()) {
if (MBBI->isCall())
EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
break;
}
}
return;
}
case X86::UBSAN_UD1:
EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
.addReg(X86::EAX)
.addReg(X86::EAX)
.addImm(1)
.addReg(X86::NoRegister)
.addImm(MI->getOperand(0).getImm())
.addReg(X86::NoRegister));
return;
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
// Stackmap shadows cannot include branch targets, so we can count the bytes
// in a call towards the shadow, but must ensure that the no thread returns
// in to the stackmap shadow. The only way to achieve this is if the call
// is at the end of the shadow.
if (MI->isCall()) {
// Count then size of the call towards the shadow
SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
// Then flush the shadow so that we fill with nops before the call, not
// after it.
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
// Then emit the call
OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
return;
}
EmitAndCountInstruction(TmpInst);
}