This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.) Differential Revision: https://reviews.llvm.org/D128423
128 lines
4.5 KiB
C++
128 lines
4.5 KiB
C++
//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/TensorCopyInsertion.h"
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
LogicalResult mlir::bufferization::insertTensorCopies(
|
|
Operation *op, const OneShotBufferizationOptions &options) {
|
|
OneShotAnalysisState state(op, options);
|
|
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
|
|
// analysis depending on whether function boundary bufferization is enabled or
|
|
// not.
|
|
if (options.bufferizeFunctionBoundaries) {
|
|
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state)))
|
|
return failure();
|
|
} else {
|
|
if (failed(analyzeOp(op, state)))
|
|
return failure();
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
return insertTensorCopies(op, state);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::bufferization::insertTensorCopies(Operation *op,
|
|
const AnalysisState &state) {
|
|
IRRewriter rewriter(op->getContext());
|
|
StringRef escapeAttrName = BufferizationDialect::kEscapeAttrName;
|
|
|
|
WalkResult result = op->walk([&](Operation *op) {
|
|
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return WalkResult::skip();
|
|
|
|
// Find allocations without an `escape` attribute and add the attribute
|
|
// based on analysis results.
|
|
if (!op->hasAttr(escapeAttrName)) {
|
|
SmallVector<bool> escapeAttrValue;
|
|
bool foundTensorResult = false;
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (!opResult.getType().isa<TensorType>() ||
|
|
!bufferizableOp.bufferizesToAllocation(opResult)) {
|
|
escapeAttrValue.push_back(false);
|
|
continue;
|
|
}
|
|
foundTensorResult = true;
|
|
bool escape = !state.getOptions().createDeallocs ||
|
|
state.isTensorYielded(opResult);
|
|
escapeAttrValue.push_back(escape);
|
|
}
|
|
if (foundTensorResult)
|
|
op->setAttr(escapeAttrName, rewriter.getBoolArrayAttr(escapeAttrValue));
|
|
}
|
|
|
|
// Find inplacability conflicts and resolve them. (Typically with explicit
|
|
// tensor copies in the form of AllocTensorOps.)
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return failure(result.wasInterrupted());
|
|
}
|
|
|
|
namespace {
|
|
struct TensorCopyInsertionPass
|
|
: TensorCopyInsertionBase<TensorCopyInsertionPass> {
|
|
TensorCopyInsertionPass()
|
|
: TensorCopyInsertionBase<TensorCopyInsertionPass>(),
|
|
options(llvm::None) {}
|
|
TensorCopyInsertionPass(const OneShotBufferizationOptions &options)
|
|
: TensorCopyInsertionBase<TensorCopyInsertionPass>(), options(options) {}
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<bufferization::BufferizationDialect>();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
if (options) {
|
|
if (failed(insertTensorCopies(getOperation(), *options)))
|
|
signalPassFailure();
|
|
} else {
|
|
OneShotBufferizationOptions options;
|
|
options.allowReturnAllocs = allowReturnAllocs;
|
|
options.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
|
|
options.createDeallocs = createDeallocs;
|
|
if (mustInferMemorySpace)
|
|
options.defaultMemorySpace = None;
|
|
if (failed(insertTensorCopies(getOperation(), options)))
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
|
|
private:
|
|
Optional<OneShotBufferizationOptions> options;
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createTensorCopyInsertionPass() {
|
|
return std::make_unique<TensorCopyInsertionPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::bufferization::createTensorCopyInsertionPass(
|
|
const OneShotBufferizationOptions &options) {
|
|
return std::make_unique<TensorCopyInsertionPass>(options);
|
|
}
|