Files
clang-p2996/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir
Nicolas Vasilache 1f77f01c65 [mlir][Linalg] Add a Transform dialect NavigationOp op to match a list of ops or an interface.
This operation is a NavigationOp that simplifies the writing of transform IR.
Since there is no way of refering to an interface by name, the current implementation uses
an EnumAttr and depends on the interfaces it supports.
In the future, it would be worthwhile to remove this dependence and generalize.

Differential Revision: https://reviews.llvm.org/D130267
2022-07-21 07:11:42 -07:00

111 lines
3.5 KiB
MLIR

// RUN: mlir-opt --test-transform-dialect-interpreter %s -split-input-file -verify-diagnostics | FileCheck %s
// Test One-Shot Bufferize.
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
sequence %arg0 {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["func.func"]} in %arg1
transform.bufferization.one_shot_bufferize %0
{target_is_module = false}
}
}
// CHECK-LABEL: func @test_function(
// CHECK-SAME: %[[A:.*]]: tensor<?xf32>
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
%c0 = arith.constant 0 : index
// CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
// CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
// CHECK: memref.copy %[[A_memref]], %[[alloc]]
// CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
// CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
%0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
// CHECK: memref.dealloc %[[alloc]]
// CHECK: return %[[res_tensor]]
return %0 : tensor<?xf32>
}
// -----
// Test analysis of One-Shot Bufferize only.
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
sequence %arg0 {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["func.func"]} in %arg1
transform.bufferization.one_shot_bufferize %0
{target_is_module = false, test_analysis_only = true}
}
}
// CHECK-LABEL: func @test_function_analysis(
// CHECK-SAME: %[[A:.*]]: tensor<?xf32>
func.func @test_function_analysis(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
%c0 = arith.constant 0 : index
// CHECK: vector.transfer_write
// CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]}
// CHECK-SAME: tensor<?xf32>
%0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
// Test One-Shot Bufferize transform failure with an unknown op. This would be
// allowed with `allow_unknown_ops`.
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
sequence %arg0 {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["func.func"]} in %arg1
// expected-error @+1 {{bufferization failed}}
transform.bufferization.one_shot_bufferize %0 {target_is_module = false}
}
}
func.func @test_unknown_op_failure() -> (tensor<?xf32>) {
// expected-error @+1 {{op was not bufferized}}
%0 = "test.dummy_op"() : () -> (tensor<?xf32>)
return %0 : tensor<?xf32>
}
// -----
// Test One-Shot Bufferize transform failure with a module op.
transform.with_pdl_patterns {
^bb0(%arg0: !pdl.operation):
sequence %arg0 {
^bb0(%arg1: !pdl.operation):
// %arg1 is the module
transform.bufferization.one_shot_bufferize %arg1
}
}
module {
// CHECK-LABEL: func @test_function(
// CHECK-SAME: %[[A:.*]]: tensor<?xf32>
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
%c0 = arith.constant 0 : index
// CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
// CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
// CHECK: memref.copy %[[A_memref]], %[[alloc]]
// CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
// CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
%0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
// CHECK: memref.dealloc %[[alloc]]
// CHECK: return %[[res_tensor]]
return %0 : tensor<?xf32>
}
}