Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_complex32.mlir
Matthias Springer 27a431f5e9 [mlir][bufferization][NFC] Move sparse_tensor.release to bufferization dialect
This op used to belong to the sparse dialect, but there are use cases for dense bufferization as well. (E.g., when a tensor alloc is returned from a function and should be deallocated at the call site.) This change moves the op to the bufferization dialect, which now has an `alloc_tensor` and a `dealloc_tensor` op.

Differential Revision: https://reviews.llvm.org/D129985
2022-07-19 09:18:19 +02:00

117 lines
4.5 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
#trait_op = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)>, // b (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP b(i)"
}
module {
func.func @cadd(%arga: tensor<?xcomplex<f32>, #SparseVector>,
%argb: tensor<?xcomplex<f32>, #SparseVector>)
-> tensor<?xcomplex<f32>, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f32>, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>)
outs(%xv: tensor<?xcomplex<f32>, #SparseVector>) {
^bb(%a: complex<f32>, %b: complex<f32>, %x: complex<f32>):
%1 = complex.add %a, %b : complex<f32>
linalg.yield %1 : complex<f32>
} -> tensor<?xcomplex<f32>, #SparseVector>
return %0 : tensor<?xcomplex<f32>, #SparseVector>
}
func.func @cmul(%arga: tensor<?xcomplex<f32>, #SparseVector>,
%argb: tensor<?xcomplex<f32>, #SparseVector>)
-> tensor<?xcomplex<f32>, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f32>, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>)
outs(%xv: tensor<?xcomplex<f32>, #SparseVector>) {
^bb(%a: complex<f32>, %b: complex<f32>, %x: complex<f32>):
%1 = complex.mul %a, %b : complex<f32>
linalg.yield %1 : complex<f32>
} -> tensor<?xcomplex<f32>, #SparseVector>
return %0 : tensor<?xcomplex<f32>, #SparseVector>
}
func.func @dump(%arg0: tensor<?xcomplex<f32>, #SparseVector>, %d: index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%mem = sparse_tensor.values %arg0 : tensor<?xcomplex<f32>, #SparseVector> to memref<?xcomplex<f32>>
scf.for %i = %c0 to %d step %c1 {
%v = memref.load %mem[%i] : memref<?xcomplex<f32>>
%real = complex.re %v : complex<f32>
%imag = complex.im %v : complex<f32>
vector.print %real : f32
vector.print %imag : f32
}
return
}
// Driver method to call and verify complex kernels.
func.func @entry() {
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [28], [31] ],
[ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f32>>
%v2 = arith.constant sparse<
[ [1], [28], [31] ],
[ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex<f32>>
%sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f32>> to tensor<?xcomplex<f32>, #SparseVector>
%sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex<f32>> to tensor<?xcomplex<f32>, #SparseVector>
// Call sparse vector kernels.
%0 = call @cadd(%sv1, %sv2)
: (tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xcomplex<f32>, #SparseVector>
%1 = call @cmul(%sv1, %sv2)
: (tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xcomplex<f32>, #SparseVector>
//
// Verify the results.
//
// CHECK: 511.13
// CHECK-NEXT: 2
// CHECK-NEXT: 1
// CHECK-NEXT: 0
// CHECK-NEXT: 5
// CHECK-NEXT: 4
// CHECK-NEXT: 8
// CHECK-NEXT: 6
// CHECK-NEXT: 6
// CHECK-NEXT: 8
// CHECK-NEXT: 15
// CHECK-NEXT: 18
//
%d1 = arith.constant 4 : index
%d2 = arith.constant 2 : index
call @dump(%0, %d1) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
call @dump(%1, %d2) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %sv2 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %0 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %1 : tensor<?xcomplex<f32>, #SparseVector>
return
}
}