Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_sum.mlir
Matthias Springer 27a431f5e9 [mlir][bufferization][NFC] Move sparse_tensor.release to bufferization dialect
This op used to belong to the sparse dialect, but there are use cases for dense bufferization as well. (E.g., when a tensor alloc is returned from a function and should be deallocated at the call site.) This change moves the op to the bufferization dialect, which now has an `alloc_tensor` and a `dealloc_tensor` op.

Differential Revision: https://reviews.llvm.org/D129985
2022-07-19 09:18:19 +02:00

87 lines
2.6 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with SIMDization as well. This should not change the outcome.
//
// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=2" | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
!Filename = !llvm.ptr<i8>
#SparseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed" ]
}>
#trait_sum_reduce = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> ()> // x (out)
],
iterator_types = ["reduction", "reduction"],
doc = "x += A(i,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that sum-reduces a matrix to a single scalar.
//
func.func @kernel_sum_reduce(%arga: tensor<?x?xf64, #SparseMatrix>,
%argx: tensor<f64>) -> tensor<f64> {
%0 = linalg.generic #trait_sum_reduce
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
outs(%argx: tensor<f64>) {
^bb(%a: f64, %x: f64):
%0 = arith.addf %x, %a : f64
linalg.yield %0 : f64
} -> tensor<f64>
return %0 : tensor<f64>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @entry() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
// Setup memory for a single reduction scalar,
// initialized to zero.
%x = tensor.from_elements %d0 : tensor<f64>
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #SparseMatrix>
// Call the kernel.
%0 = call @kernel_sum_reduce(%a, %x)
: (tensor<?x?xf64, #SparseMatrix>, tensor<f64>) -> tensor<f64>
// Print the result for verification.
//
// CHECK: 30.2
//
%v = tensor.extract %0[] : tensor<f64>
vector.print %v : f64
// Release the resources.
bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
return
}
}