This op used to belong to the sparse dialect, but there are use cases for dense bufferization as well. (E.g., when a tensor alloc is returned from a function and should be deallocated at the call site.) This change moves the op to the bufferization dialect, which now has an `alloc_tensor` and a `dealloc_tensor` op. Differential Revision: https://reviews.llvm.org/D129985
87 lines
2.6 KiB
MLIR
87 lines
2.6 KiB
MLIR
// RUN: mlir-opt %s --sparse-compiler | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
//
|
|
// Do the same run, but now with SIMDization as well. This should not change the outcome.
|
|
//
|
|
// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=2" | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/test_symmetric.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
!Filename = !llvm.ptr<i8>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ]
|
|
}>
|
|
|
|
#trait_sum_reduce = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> ()> // x (out)
|
|
],
|
|
iterator_types = ["reduction", "reduction"],
|
|
doc = "x += A(i,j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that sum-reduces a matrix to a single scalar.
|
|
//
|
|
func.func @kernel_sum_reduce(%arga: tensor<?x?xf64, #SparseMatrix>,
|
|
%argx: tensor<f64>) -> tensor<f64> {
|
|
%0 = linalg.generic #trait_sum_reduce
|
|
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
|
|
outs(%argx: tensor<f64>) {
|
|
^bb(%a: f64, %x: f64):
|
|
%0 = arith.addf %x, %a : f64
|
|
linalg.yield %0 : f64
|
|
} -> tensor<f64>
|
|
return %0 : tensor<f64>
|
|
}
|
|
|
|
func.func private @getTensorFilename(index) -> (!Filename)
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the sparse kernel.
|
|
//
|
|
func.func @entry() {
|
|
%d0 = arith.constant 0.0 : f64
|
|
%c0 = arith.constant 0 : index
|
|
|
|
// Setup memory for a single reduction scalar,
|
|
// initialized to zero.
|
|
%x = tensor.from_elements %d0 : tensor<f64>
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #SparseMatrix>
|
|
|
|
// Call the kernel.
|
|
%0 = call @kernel_sum_reduce(%a, %x)
|
|
: (tensor<?x?xf64, #SparseMatrix>, tensor<f64>) -> tensor<f64>
|
|
|
|
// Print the result for verification.
|
|
//
|
|
// CHECK: 30.2
|
|
//
|
|
%v = tensor.extract %0[] : tensor<f64>
|
|
vector.print %v : f64
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
|
|
|
|
return
|
|
}
|
|
}
|